BETRIEBSANLEITUNG OPERATING MANUAL

ProPuls 330, 400, 500

digitale PULS-Schweißmaschinen digital Pulse Welding machine

mit Koffer DVK 3 with wire feed case DVK 3 und Kühlgerät KG10 und Fahrwagen FG 10 and cooling unit KG10 and trolley FG10 (Version 04/2014)

Deutsch (Seite 1-31,64-74)

English (Page 32-74)

Hinweis:

Die Anlage muss aus Sicherheitsgründen einmal im Jahr durch die Fa. JÄCKLE oder einen anderen autorisierten Fachmann einer Sicherheitsprüfung

nach DIN IEC 60974 Teil 4:

Sicherheit, Instandhaltung und Prüfung von Lichtbogenschweißeinrichtungen im Gebrauch

unterzogen werden!

Attention:

This Welding unit has to be safety checked every year by JÄCKLE Company or another special qualified electrician according to the harmonized standard

IEC 60974 – 4

Safety, maintenance and inspection of arc welding equipment in use

Schutzvermerk nach DIN ISO 16016 beachten

Observe protection notice ISO 16016

Irrtümer und technische Änderungen vorbehalten !

Subject to mistakes and technical modifications !

Version 1.00 April 2014

Allgemeine Informationen:

Diese Betriebsanleitung soll Sie dabei unterstützen, mit dem Schweißgerät effektiv und sicher zu arbeiten.

Bitte lesen Sie die Anleitung vor Inbetriebnahme der Anlage gründlich durch.

Die Informationen dieser Betriebsanleitung müssen dem Bedienungspersonal zugänglich gemacht werden. Die Anleitung sollte als Nachschlagewerk immer griffbereit in der Nähe der Anlage sein.

Elektromagnetische Verträglichkeit EMV (DIN EN 60974-10):

WARNUNG: Diese Klasse A Schweißeinrichtung ist nicht für den Gebrauch in Wohnbereichen vorgesehen, in denen die Stromversorgung über ein öffentliches Niederspannungsversorgungssystem erfolgt. Es kann, sowohl durch leitungsgebundene als auch abgestrahlte Störungen, möglicherweise schwierig sein, in diesen Bereichen elektromagnetische Verträglichkeit zu gewährleisten.

INFORMATION: Der Anwender ist für Störungen verantwortlich, die vom Betrieb der Anlage ausgehen. Er muss mögliche elektromagnetische Probleme in der Umgebung bewerten und berücksichtigen.

Gewährleistung:

INFORMATION: Unsachgemäße Reparatur oder Wartung, technische Veränderung des Produktes, eigenmächtige, nicht ausdrücklich von Jäckle GmbH angeordnete oder gestattete Eingriffe, sowie Fahrlässigkeit beim Einbau bzw. Gebrauch oder die Außerachtlassung der Sorgfalt in eigenen Angelegenheiten führen zum Erlöschen jeglicher Gewährleistungsansprüche.

EG-KONFORMITÄTSERKLÄRUNG

Hersteller:

Jäckle Schweiß- und Schneidtechnik GmbH Riedweg 4+9 D – 88339 Bad Waldsee

Hiermit erklären wir, dass nachfolgend aufgeführte Stromquelle den Sicherheitsanforderungen der EG-Richtlinien entspricht.

Bezeichnung der Anlagen:	Schweißstromquellen für MIG / MAG
Typ der Anlagen:	ProPuls 330, 400, 500

Einschlägige EG-Richtlinien:

EMV-Richtlinie	2004/108/EG	(seit 20.07.2007)
Niederspannungsrichtlinie	2006/95/EG	(seit 16.01.2007)

Angewandte harmonisierte Normen

EN 60 974 – Teil 1	Lichtbogenschweißeinrichtungen / Schweißstromquellen
EN 60 974 – Teil 2	Lichtbogenschweißeinrichtungen / Flüssigkeitskühlsysteme
EN 60 974 – Teil 5	Lichtbogenschweißeinrichtungen / Drahtvorschubgeräte
EN 60 974 – Teil 10	EMV Produktnorm für Lichtbogenschweißeinrichtungen

Zusätzliche Information:

Beschränkter Einsatzbereich, Klasse A Schweißeinrichtung

Jäckle Schweiß- und Schneidtechnik GmbH

Jachle

Reinhard Jäckle

Seite

		~
1.	Kurzbeschreibung	3
2.	Technische Daten	4
3.	Sicherheitshinweise	5
	3.1 Brand bzw. Explosionsverhütung	5
	3.2 Verhütung von elektrischen Schlägen	5
	3.3 Strahlung	6
	3.4 Schutz vor Lärm	6
	3.5 Rauchgas	6
	3.6 Gasdruckausrüstung	7
	3.7 Weitere Vorschriften	7
	3.8 Entsorgung der Maschine	7
4.	Bedienelemente	8
	4.1 Materialstärke / Stromstärke / Drahtgeschwindigkeit	9
	4.2 Drehknopf (linkes Display)	9
	4.3 Betriebsart 2-Takt / 4-Takt / 2T-4T Krater / 4T Krater - Strom I2 / Punkten / Intervallen	9
	4.4 Fx / Parameterbeschreibung der Schweißprozesse MIG/MAG:	11
	4.4 Fx / Parameterbeschreibung der Schweißprozesse WIG / ELEKTRODE:	12
	4.5 Schweißprozess / Materialauswahl	12
	4 6 Sonderfunktionstaste 1	13
	17 Lichthogenlänge / Schweißenannung / Schweißdrossel	13
	4.7 Elentbogenlange / Serweisspannung / Serweisurosser	
	4.0 Grafik Dienlay	12
	4.9 Glairk Display	
	4.10 Gaslesi / 11 Dianteinaueni.	14
	4.12 Enter/UK - JUBSIUKE	14
~	4.13 Sonderfunktionstaste 2	14
5.	Sonderfunktionen / SETUP	15
	5.1 Jobs loscnen	15
	5.2 Passwort einstellen / Bedienung sperren	15
	5.3 Sperr Funktionen	15
	5.4 Extra Einstellungen / Sprache	15
	5.5 Betriebsstunden / Energieverbrauch	15
	5.6 Extras Schweissen (wenn unter Punkt 5.4 aktiviert)	16
	5.7 Zubehör	16
	5.8 Reset	16
	5.9 Software Versionen	16
	5.10 Download / Upload	16
	5.11 Fehlermeldungen	17
6.	Bedienung / Schweißen	17
	6.1 MIG PULS – MIG DoppelPULS - MIG/MAG Automatik	17
	6.2 MIG/MAG Hand	18
	6.3 Sonderverfahren Cold – Pipe/Rohr – Power Arc – Fastarc (alle Optionen)	18
	6.4 Elektrodenschweissen / VRD	20
	6.5 WIG-Schweißen mit LIFT-ARC-Funktion / Pulsen	21
	6.6 Schweißsequenzen / Jobsprung	
	6 7 Schweißen von Aluminium	23
7	Inbetriebnahme	23
••	7 1 Transport	
	7.2 Anlago aufstellen	
0	7.2 Annaye auistenen	23 25
о. О	Dianivoisollub Bflaga Kühlmittal IDD und Sicharhaitenrüfung	23
Э. 10	Critical Detentionator Formanolung, and Duck Dull Dramon	20
10.	Option Fotentiometer Fernregelung und Fush-Full Brenner	20
11.	Storungen, renier, Ursache und Beseitigung	21
12	Automatische Fehieralagnostik	28
25	Ersatztelle / spare parts	64
26.	Schaltplane / circuit diagrams	70
27.	Schweißprogramme / Program table:	73

1. Kurzbeschreibung

MIG/MAG-PULS Stromquellen der JÄCKLE ProPuls Serie basieren auf modernster Leistungselektronik. Sie sind kompakt, leicht und vielseitig einsetzbar (MIG/MAG-Normal, MIG-PULS, MIG-Doppelpuls, WIG-LIFT-ARC, E-Handschweißen).

Die moderne IGBT-Inverter-Technologie ermöglicht hochwertige Schweißarbeiten im MIG/MAG als auch beim Puls-Schweißen. Hervorragende Schweißergebnisse werden an rostfreiem Stahl, Aluminium und beschichteten Werkstoffen erzielt. Durch ihren nahezu spritzerfreien Lichtbogen reduzieren sich die Nacharbeiten am Werkstück erheblich. Die ProPULS-Serie ist die ideale Lösung für Serienanwendungen, bei denen Präzision und Reproduzierbarkeit der Schweißungen im Vordergrund stehen.

Die wesentlichen Eigenschaften der ProPuls Serie sind:

- Kompaktes und innovatives Design
- Geringes Gewicht
- Robuste Tragegriffe
- Bedienelemente gegen unbeabsichtigte Stöße geschützt
- Synergetische, digitale Einstellung aller Schwei
 ßparameter
- Außergewöhnlich spritzerfreie Lichtbogencharakteristik im MIG/MAG- und PULS Schweißverfahren
- Anwender spezifische Schweißprogramme speicher- und abrufbar
- Programmierte Slope-Down-Funktion; wird der Schweißbrenner angehoben, ohne den Lichtbogen auszuschalten, erfolgt ein automatischer Slope-Down mit Abschaltung (WIG)
- Hohe Lichtbogenqualität im E-Hand und WIG-LIFT-ARC Schwei
 ßverfahren
- Einfachstes Vorwählen und Abrufen der Schweißparameter / Programme
- Geringer Energieverbrauch somit niedrige Netzbelastung;
- Thermostat geregelter Lüfter + Wasserkühleinheit (wenn installiert)
- Automatische Fehlerdiagnostik durch Anzeigen von Fehlercodes
- HOT-Start und Endkraterfüllung regelbar
- Programmwahl / Schweißsequenzen über Brennertaster (UP/DOWN-Brenner notwendig)
- Lichtbogenlänge /-spannung regulierbar
- elektronisch einstellbare Drossel
- gasloses Drahteinfädeln
- Gastest

Eine bedienerfreundliche, synergetisch geführte Einknopf-Steuerung sorgt für eine schnelle Anpassung aller erforderlichen Prozessparameter an die Schweißaufgabe.

Sie ermöglicht selbst Schweißern mit geringem Prozess-Know-how die Bewältigung schwierigster Schweißaufgaben. Zeitraubende Parametersuche und Einstellungen gehören damit der Vergangenheit an.

Nach dem Start garantiert die Zündautomatik mit HOT-Start und Einschleichfunktion ein sicheres Zünden des Lichtbogens. Die Synergiesteuerung stellt nach Vorgabe der gewünschten Drahtgeschwindigkeit automatisch das optimale statische und dynamische Verhalten ein.

Das Ergebnis ist ein extrem spritzerarmer Schweißprozess mit kurzschlussfreiem Tropfen-Übergang bei höchster Prozessstabilität, auch bei geringer Abschmelzleistung.

Durch den elektronisch geregelten 4-Rollenantrieb, der die vorgegebene Drahtgeschwindigkeit konstant hält, wird selbst bei unterschiedlicher Lichtbogencharakteristik eine gleichmäßige Abschmelzleistung erzielt. Beim Beenden der Schweißung löst die Abschaltautomatik den letzten Tropfen am Schweißdrahtende ab. Dadurch bleibt der Draht spitz und garantiert einen sicheren Neustart.

Besonders hervorzuheben ist der servicefreundliche und modulare Aufbau der Anlage. Alle Komponenten sind leicht zu erreichen und können ohne großen Aufwand von eingewiesenem Servicepersonal getauscht werden.

Die Schweißanlagen sind geeignet zum MIG/MAG-, PULS-, DOPPELPULS-, E-HAND- und WIG-LIFT-ARC- schweißen.

2. Technische Daten

STROMQUELLE	ProPuls 330	ProPuls 400	ProPuls 500
Netzspannung, 50/60 Hz	400V (320V - 480V)	400V (320V - 480V)	400V (320V - 480V)
Sicherung	16 A träge	32 A träge	32 A träge
Max. Leistungsaufnahme	18,8 kVA	25,5 kVA	32 kVA
Cos phi	0,9	0,9	0,9
Einstellbereich, stufenlos	10 - 330 A	10 - 400 A	10 - 500 A
Arbeitsspannung	15–30,5 V	15 - 34 V	10 - 39 V
Leerlaufspannung	63 V	70 V	70 V
Einschaltdauer 40 % (40 °C)	330 A / 30,5 V		
Einschaltdauer 50 % (40 °C)		400 A / 34 V	500 A / 39 V
Einschaltdauer 60 % (40 °C)	300 A / 29 V	370 A / 32,5 V	460 A / 37 V
Einschaltdauer 100 % (40 °C)	280 A / 28 V	330 A / 30,5 V	380 A / 33 V
Schutzart	IP 23	IP 23	IP 23
Isolationsklasse	н	н	н
Kühlart	F	F	F
Gewicht mit Fahrwagen und Kühlgerät	107 kg	119 kg	124 kg
Maße L x B x H (mm)			1050 x 540 x 970

Koffer PP4

Drahtgeschwindigkeit	0,5 – 22 m/min
Drahtdurchmesser	0,8 – 1,2mm
Vorschubmotor mit Tacho	100W / 42V

5	3
(E

Zulassung für das Schweißen unter erhöhter elektrischer Gefährdung Herstellung gemäß Euronorm EN 60 974-1 und EN 60974-10

Generatorbetrieb:

Der Generator muss mindestens 30% mehr Leistung erzeugen, als die maximale Leistung des Gerätes.

Beispiel: 19kVA (Gerät) + 30% = 25kVA. Für dieses Gerät muss ein 25kVA Generator verwendet werden.

Ein kleinerer Generator führt zur Beschädigung des Jäckle Schweißgerätes, sowie des Generators und darf daher nicht verwendet werden!

3. Sicherheitshinweise

Die Anlage ist nach den einschlägigen internationalen Normen gebaut.

 a) Die Anlage ist ausschließlich für das MIG/MAG-, PULS-, DOPPEL-PULS-, E-HAND- und WIG-LIFT-ARC –Schweißen bestimmt.
 Wie bei jedem technischen Produkt können von den Anlagen bei unsachgemäßer oder nicht bestimmungsgemäßer Nutzung Gefahren ausgehen.

Das Bedienungspersonal muss über die Sicherheitshinweise unterrichtet werden. Die Anlage darf nie von ungeschultem Personal bedient werden.

- b) Reparaturen im elektrischen Bereich dürfen nur von Elektrofachkräften ausgeführt werden.
- c) Bei Pflege-, Wartungs- und Reparaturarbeiten sowie vor Öffnen des Gehäuses immer Netzstecker ziehen.
- d) Die Anlage ist stets in einem funktionstüchtigen Zustand zu halten
- e) Modifikationen an der Anlage sind verboten.
- f) Die Schweißanlage ist ausschließlich für obige Anwendungen konstruiert und anzuwenden. Das Auftauen von Rohrleitungen ist verboten.

Die nachfolgend aufgeführten Sicherheitsbestimmungen sind zu beachten.

Durch den Aktionsraum bedingt, sind in der Nähe arbeitende Personen, ebenfalls vor eventuellen Gefahren zu schützen.

3.1 Brand bzw. Explosionsverhütung

Brennbare Stoffe sind von der Schweißzone fernzuhalten. Sie könnten sich durch Funken und heiße Schlacke entzünden.

Warnung:

- ⇒ Brennbare Materialien entfernen (Abstand mindestens 10 m)
- ⇒ Heiße Metallteile und Schmelze abkühlen lassen.
- ⇒ Entflammbare Bereiche zuerst entlüften.
- ➡ Keine Behälter schweißen die brennbare Materialien enthalten (auch keine Reste davon; Gefahr entflammbarer Gase!)

Die Anlage nicht in Betrieb nehmen, wenn die Umgebungsluft explosiven Staub oder Gase enthält. (Anwender muss gegebenenfalls Messungen durchführen). Behälter bzw. Rohre, die sich im Über- bzw. Unterdruck befinden, dürfen nicht geschweißt werden. (Explosions- bzw. Implosions-Gefahr!) Beim Schweißen von Aluminium können sich entflammbare Schlacken und Stäube (Rauch) bilden.

Beim Schweißen von Aluminium können sich entflammbare Schlacken und Stäube (Rauch) bilden. Beachten Sie eine erhöhte Brand- bzw. Explosionsgefahr.

3.2 Verhütung von elektrischen Schlägen

Warnung:

Das Berühren stromführender Teile kann tödliche elektrische Schläge oder schwere Verbrennungen verursachen.

Beim Schweißen entsteht ein Stromkreis über den Brenner, das Werkstück (alle damit verbundenen Teile) und das Massekabel, zurück in die Anlage. Dieser Stromkreis darf während des Schweißens nicht direkt berührt bzw. unterbrochen werden.

Die Massezange muss mit einwandfreiem metallischem Kontakt am Werkstück angebracht sein, im Nahbereich des zu schweißenden Teils.

Der Schweißstrom muss vom Brenner über das Werkstück durch das Massekabel zurück in die Anlage fließen. Bei falscher Kontaktierung des Werkstück- bzw. Massekabels kann der Schweißstrom über eine indirekte Verbindung fließen und dort zu Schaden führen, z.B. über die Schutzleiter-Installation (PE, Erde).

Handschuhe und Schuhe sind zu tragen, die ausreichende Isolierung bieten. Die gesamte Kleidung ist trocken zu halten.

Alle an der Anlage angeschlossenen elektrischen Leitungen sind auf einwandfreien Zustand zu

Erhöhte Vorsicht gilt in einer Umgebung mit hoher Feuchtigkeit!

Warnung:

überprüfen.

Blanke Stellen ohne bzw. mit schadhafter Isolierung sind lebensgefährlich. Beschädigte Kabel bzw. Schlauchpakete sofort ersetzen!

Beim Wechsel der Brennerteile die Anlage am Hauptschalter außer Betrieb setzen.

Vor öffnen des Anlagengehäuses Netzstecker ziehen.

Die Anlagen sind in regelmäßigen Abständen auf Ihren einwandfreien Zustand zu prüfen, hierfür gilt:

3.3 Strahlung

Die Strahlung des Lichtbogens kann zu Augenschäden und Hautverbrennungen führen. Deshalb muss zum Schutz der Augen ein Schweißschild oder ein Schutzhelm verwendet werden. Die Haut muss durch geeignete Schutzbekleidung (Schweißerhandschuhe, Lederschürze, Sicherheitsschuhe) geschützt werden.

In der Nähe arbeitende Personen sind ebenfalls vor der Lichtbogenstrahlung zu schützen. (mobile Trennwand, Vorhang, etc.).

3.4 Schutz vor Lärm

Beim Gebrauch des Schweißgerätes entsteht großer Lärm, der auf Dauer das Gehör schädigt!

Im Dauereinsatz ist ein ausreichender Gehörschutz zu tragen.

In der Nähe arbeitende Personen sind ebenfalls vor Lärm zu schützen.

3.5 Rauchgas

Beim Schweißen entstehen Rauchgase bzw. toxische Dämpfe die zu Sauerstoffmangel in der Atemluft führen. Deshalb darf die Schweißanlage nur in gut belüfteten Hallen, im Freien oder in geschlossenen Räumen mit entsprechender Absaugung (am besten unterhalb der Schweißzone absaugen) verwendet werden.

Der Schweißbereich des Werkstücks muss von Lösungs- und Entfettungsmitteln gereinigt werden, um die Bildung von Giftgasen zu vermeiden bzw. zu vermindern.

Schweißen von Blei, auch in Form von Überzügen, verzinkten Teilen, Kadmium, "kadmierten Schrauben", Beryllium (meist als Legierungsbestandteil, z.B. Beryllium-Kupfer) und anderen Metallen, die beim Schweißen giftige Dämpfe entwickeln, ist nur mit Atemschutzmaske bzw. gerät, sowie scharfer Absaugung und Filterung der giftigen Gase und Dämpfe erlaubt.

Erhöhte Vorsicht gilt beim Schweißen von Behältern.

3.6 Gasdruckausrüstung

Gasflaschen stehen unter hohem Druck und stellen eine Gefahrenquelle dar. Beispielsweise müssen die Flaschen auf jeden Fall vor direkter Sonneneinstrahlung, vor offenem Feuer und starken Temperaturschwankungen, z. B. sehr tiefen Temperaturen geschützt werden.

Der richtige Umgang mit ihnen ist unbedingt beim Gaslieferanten zu erfragen.

Gasbehälter und –zubehör sind in einwandfreiem Zustand zu halten. Achten Sie darauf, dass nur zugelassene Teile, wie Schläuche, Kupplungen, Druckminderer usw. eingesetzt werden.

Achtung:

Anschlüsse dürfen nicht mit Öl bzw. Fett geschmiert werden (Selbstentzündungsgefahr)

3.7 Weitere Vorschriften

Neben den Hinweisen in dieser Betriebsanleitung sind die allgemeingültigen Sicherheitsvorschriften zu beachten.

Außerdem weisen wir darauf hin, dass die Anlagen in bestimmten Einsatzbereichen trotz eingehaltener Aussendungsgrenzwerte elektromagnetische Störungen verursachen können und dass diese Störungen im Verantwortungsbereich des Anwenders liegen.

Personen, die Herzschrittmacher oder Hörgeräte tragen, sollten sich vor Arbeiten in der Nähe der Maschinen, von einem Arzt beraten lassen.

Achtung:

Es ist möglich, dass im Bereich eines Krankenhauses oder ähnlichem durch den Betrieb der Anlage elektromedizinische, informationstechnische oder auch andere Geräte (EKG,PC, ...) in ihrer Funktion beeinträchtigt werden können.

Vor Inbetriebnahme der Anlagen ist daher sicherzustellen, dass der Betreiber solcher oder ähnlicher Geräte, vom Anwender vorher informiert werden.

Entsprechende Hilfen zur Bewertung des Einsatzbereichs und zur Minimierung von elektromagnetischen Störungen (z.B. Gebrauch abgeschirmter Leitungen) sind der EMV-Produktnorm für Lichtbogenschweißeinrichtungen zu entnehmen:

EN 60 974-10 (Elektromagnetische Verträglichkeit EMV)

3.8 Entsorgung der Maschine

Geben Sie Elektro-Altgeräte nicht zu normalem Hausmüll!

Unter der Berücksichtigung der EG-Richtlinie 2002/96 für Elektro- und Elektronik-Altgeräte und ihrer Umsetzung in Anlehnung an das nationale Recht müssen Elektroausrüstungen, die das Ende ihrer Lebensdauer erreicht haben, getrennt gesammelt und einer zuständigen, umweltverantwortlichen Wiederverwertungsanlage übergeben werden. Gemäß den Anweisungen der Gemeindebehörden ist der Eigentümer der Ausrüstung verpflichtet, einer regionalen Sammelzentrale eine außer Betrieb gesetzte Einheit zu übergeben.

Weitere Information finden Sie im Internet unter dem Stichwort ,WEEE'.

4. Bedienelemente

Abbildung 4.1 Bedienelemente – Knöpfe

4.1 Materialstärke / Stromstärke / Drahtgeschwindigkeit

Materialstärke:

(📩
•) Möglicher Bereich von 0,6 bis 20mm; in Schritten von 0,1mm

Schweißstrom:

A

Möglicher Bereich von 10 bis 330/400/500A in Schritten von 1A

• Drahtgeschwindigkeit: (8) Möglicher Bereich von 1,2 bis 25 m/min. in Schritten von 0,1m/min

Durch wiederholtes tippen auf die Taste kann die gewünschte Funktion aufgerufen werden. Die jeweilige LED leuchtet.

Der Wert kann nun mit dem linken Drehknopf (Pos. 2) eingestellt werden.

HINWEIS: Die Einstellbereiche variieren in Abhängigkeit vom Schweißverfahren und Material.

4.2 Drehknopf (linkes Display)

Mit diesem Drehknopf lässt sich der jeweils aktive Parameter **Materialstärke** / **Stromstärke** oder **Drahtgeschwindigkeit** einstellen.

Des Weiteren können die Funktionen im Textdisplay (linke Displayhälfte) geändert werden.

4.3 Betriebsart 2-Takt / 4-Takt / 2T-4T Krater / 4T Krater - Strom I2 / Punkten / Intervallen

Durch wiederholtes tippen auf die Taste kann die gewünschte Funktion aufgerufen werden.

einstellen.

• 2-Takt	Brennertaster drücken und halten , es wird geschweißt. Brennertaster loslassen , Schweißvorgang beendet.
• 4-Takt (<u>\$ \$</u> •	Brennertaster drücken und loslassen , es wird geschweißt. Brennertaster drücken und loslassen , Schweißvorgang beendet.
• Punkten 📻 •	Brennertaster drücken und halten , es wird geschweißt. Der Schweißstrom fließt für die voreingestellte Zeit. Danach wird der Schweißprozess automatisch beendet. Brennertaster Ioslassen . Zum Wiederholen Brennertaster erneut drücken. Zum einstellen der Punktzeit die Taste Fx drücken und die Punktzeit einstellen.
• Intervallen (<u>)</u> LED blinkt	Brennertaster drücken und halten , es wird geschweißt. Der Schweißstrom fließt für die voreingestellte Schweißzeit. Danach wird der Schweißprozess automatisch beendet. Nach der voreingestellte Pausenzeit beginnt der Schweiß- prozess automatisch wieder mit der voreingestellte Schweißzeit. Dieser Vorgang wird solange wiederholt, bis der Brennertaster losgelassen wird. Zum einstellen der Schweiß/Pausenzeit die Taste Fx drücken und die Punktzeit

Krater Funktion 2-Takt, 4-Takt, Strom I2, Doppelpuls

Krater Standard: 2-Takt oder 4-takt

Variante V1: Nur 4-Takt Krater mit Strom I2

Ablaufdiagramm aller Schweißprozesse

4.4 Fx / Parameterbeschreibung der Schweißprozesse MIG/MAG:

Die Parameter können über die Taste Fx aufgerufen und mit den beiden Drehknöpfen geändert werden.

						Schv	veiß	proz	ess		
Funktion: Auswahl mit dem linken Drehknopf (Pos. 2)	Displaytext	Grundeinstellung	Bereichs- werte Auswahl mit dem rechten Drehknopf (Pos. 8)	2-Takt	4-Takt	2T Krater	4T Krater	4T Krater mit Strom I2	Punktschweißen	Intervalschweißen	Doppelpuls
Gasvorströmen	GAS VORSTR.	0.1s	0.0 – 2.0s	•	•	٠	٠	•	•	٠	•
Startgeschwindigkeit	STARTGESCHW.	0	-30 - +30	•	•	٠	•	•	٠	٠	•
Startpuls	STARTPULS	0	-30 - +30	٠	•	٠	•	•	٠	٠	•
Startstrom	STARTSTROM	20%	-50 - +100%			٠	٠	•			
Lichtbogenlänge Start	LB START	0	-30 - +30			٠	•	•			
Krater Startzeit	KR. STARTZEIT	1.0s	0.0 – 2.0s			٠					
Startrampe	STARTRAMPE	1.0s	0.0 – 2.0s			•	•	•			
Endrampe	ENDRAMPE	1.0s	0.0 - 8.0s			٠	٠	•			
Endstrom	ENDSTROM	-30%	-100 - +50%			٠	•	•			
Lichtbogenlänge Ende	LB ENDE	0	-30 - +30			•	•	•			
Krater Endzeit	KR. ENDZEIT	0.0s	0.0 – 2.0s			٠					
Rückbrandzeit	RUECKBRAND	0	-30 - +30	٠	٠	•	•	•	•	٠	•
Gasnachströmen	GAS NACHSTR.	1.0s	0.0 – 10.0s	٠	٠	•	•	•	•	٠	•
Strom I2 Startrampe	12 STARTRAMPE	0.05s	0.0 – 1.0s					•			
Strom I2	STROM I2	20%	-99 - +100%					•			
Lichtbogenlänge I2	LB I2	0	-30 - +30					•			
Strom I2 Endrampe	I2 ENDRAMPE	0.05s	0.0 – 1.0s					٠			
Doppelpuls Startrampe	DP STARTRAMPE	5.5s	0.5 – 100s								•
Doppelpuls Strom	DP STROM	50%	-99 - +200%								•
Doppelpuls Lichtbogenlänge	DP LB-LAENGE	0	-30 - +30								•
Doppelpuls Balance	DP BALANCE	0	-40 - +40								•
Doppelpuls Frequenz	DP FREQUENZ	2.7	0.1 – 5.0Hz								•
Doppelpuls Endrampe	DP ENDRAMPE	5.1s	0,1 – 100s								•
Stromanstiegs- geschwindigkeit	STEIGUNG	100 A/s	5 – 500A/s	•	•	•	•	•	•	•	•
Punktzeit	PUNKTZEIT	3.0s	0.0 - 20.0s						•		
Schweißen EIN	EIN ZEIT	1.0s	0.1 – 8.0s							٠	
Pausenzeit	PAUSE ZEIT	1.0s	0.1 – 8.0s							٠	

• Kraterfüllprogramm Standard:

2-Takt: Der Brennertaster wird **gedrückt**, und der Lichtbogen wird nach der Gasvorströmzeit mit dem voreingestellten Hot-Start Strom gezündet. Nach Ablauf der Krater Startzeit fährt der Strom mit

der eingestellten Startrampenzeit auf den eingestellten Schweißstrom I1.

Der Brennertaster wird **losgelassen**, und der Strom fällt auf den eingestellten Endschweißstrom mit der Endrampenzeit ab. Nach Ablauf der Krater Endzeit geht der Lichtbogen aus. Das Schutzgas strömt mit der eingestellten Zeit nach.

4-Takt: Der Brennertaster wird gedrückt, und der Lichtbogen wird mit dem voreingestellten Hot-Start Strom gezündet. Der Schweißstrom sinkt auf den Startstrom ab und bleibt auf diesem Wert. Der Brennertaster wird losgelassen, und der Strom fährt mit der eingestellten Startrampenzeit auf den eingestellten Schweißstrom 11. Der Brennertaster wird gedrückt und der Strom fällt auf den eingestellten End-schweißstrom mit der Endrampenzeit ab und bleibt auf diesem Wert. Der Brennertaster wird losgelassen, und der Lichtbogen geht aus. Das Schutzgas strömt mit der eingestellten Zeit nach.

• Kraterfüllprogramm 4-Takt mit Zweitstrom I2:

Funktionen wie bei Kraterfüllprogramm 4-Takt Standard.

Zusätzlich kann während des Schweißens mit dem Strom I1 durch kurzes tippen auf den (12) Brennertaster (< 0,5s) zwischen I1 und I2 hin und hergewechselt werden.

Der Strom fährt mit der I2 Startrampe von I1 zu I2, verbleibt auf diesem Wert I2, und fährt bei erneutem tippen auf den Brennertaster mit der I2 Endrampe wieder auf den Strom I1 herunter. Dieser Vorgang kann beliebig oft wiederholt werden.

• Schweißprozess Doppelpuls:

Hier kann zusätzlich zum normalen Pulsen ein weiterer Puls (Doppelpuls) aktiviert werden. Die Parameter sind im Diagramm Krater zu entnehmen.

4.4 Fx / Parameterbeschreibung der Schweißprozesse WIG / ELEKTRODE:

Die Parameter können über die Taste Fx aufgerufen und mit den beiden Drehknöpfen geändert werden.

Funktion: Auswahl mit dem linken Drehknopf (Pos. 2)	Displaytext	Grundeinstellung	Bereichs- werte Auswahl mit dem rechten Drehknopf (Pos. 8)	ELEKTRODE	WIG LIFTARC	WIG PULS LIFTARC
HOTSTART	HOT START	50	0 – 100%	•		
ARCFORCE	ARC FORCE	50	0 – 100%	•		
Startrampe	SLOPE UP	0.0s	0.0 – 2.0s		•	•
Endrampe	SLOPE DOWN	2.0s	0.0 - 8.0s		•	•
Abschaltspannung	STOP SPG	0	-30 - +30		•	•
Strompuls Überhöhung	PULS DELTA	-50%	-100 – 1000%			•
Puls Balance	PULS BALANCE	0%	-40 - 40%			•
Puls Frequenz	PULS FREQ.	100Hz	0.1 – 500Hz			•
						•

4.5 Schweißprozess / Materialauswahl

Durch wiederholtes tippen auf die Taste kann die gewünschte Funktion aufgerufen werde.

Schweißprozess (MODE):

Mit dem linken Drehknopf (Pos. 2) kann der gewünschte Prozess ausgewählt werden (▶) und mit der Taste ,ENTER / OK' (Pos. 12) aufgerufen werden. Erlaubt die Auswahl der folgenden Schweißprozesse:

- MIG PULS
- MIG DOPPELPULS
- MIG/MAG AUTOMATIK
- MIG/MAG HAND
- COLD (Option)
- PIPE/ROHR (Option)
- POWER ARC (Option)
- FASTARC (Option)
- ELEKTRODE
- WIG LIFT
- WIG PULS LIFTARC
- JOB (nur bei belegtem Jobspeicher auswählbar)

Materialauswahl (MATERIAL):

Mit dem linken Drehknopf (Pos. 2) kann die gewünschte Material / Gas / Drahtdurchmesser Kombination ausgewählt werden und mit der Taste ,ENTER / OK' (Pos. 12) aufgerufen werden.

Alle in der Maschine hinterlegten Materialien sind in der Tabelle im Kapitel 25 aufgelistet.

Das Textdisplay (Pos. 9) zeigt folgende Informationen (Beispiel):

- 1. Zeile: Schweißprozess / Nummer
- 2. Zeile: Material
- 3. Zeile: Drahtdurchmesser
- 4. Zeile: Gasart / Mischung
- PULSEN 4711 MAT STAHL-STEEL ¤ 0.8 GAS AR 82% CO2 18%

4.6 Sonderfunktionstaste 1

Mit dieser Taste sind Sonderfunktionen möglich. Eine genaue Beschreibung befindet sich bei den jeweiligen Funktionen.

4.7 Lichtbogenlänge / Schweißspannung / Schweißdrossel

• Lichtbogenlänge: • 🕅	Möglicher Bereich von -30% bis +30% des eingestellten Spannungswertes in Schritten von 1%. Ein Wert kleiner 0 bedeutet eine kürzeren Lichtbogen, ein Wert größer 0 einen längeren Lichtbogen.
• Schweißspannung: • V	Zeigt den Spannungswert der aktuellen Einstellung an. Verändert werden kann er mit dem linken Drehknopf zur Leistungseinstellung.
	Im Schweißprozess ,HAND' kann die Schweißspannung zwischen 10V und 38V in Schritten von 0,1V eingestellt werden.
• Schweißdrossel:	Möglicher Bereich von -30% bis +30% in Schritten von 1%. Mit dieser Funktion kann der Lichtbogen ,weicher' oder ,härter' eingestellt werden.

Durch wiederholtes tippen auf die Taste kann die gewünschte Funktion aufgerufen werden. Die jeweilige LED leuchtet.

Der Wert kann nun mit dem rechten Drehknopf (Pos. 8) eingestellt werden.

4.8 Drehknopf 2 (rechtes Display)

Mit diesem Drehknopf lassen sich der jeweils aktive Parameter Lichtbogenlänge / Schweißspannung oder Schweißdrossel einstellen.

Des Weiteren können die Funktionen im Textdisplay (linke Displayhälfte) geändert werden.

4.9 Grafik Display

Display für die Anzeige aller Schweißfunktionen und Parameter.

4.10 Gastest / 11 Drahteinfädeln

Durch antippen der Taste GASTEST öffnet das Gasventil und das Schutzgas strömt für maximal für 15 Sekunden. Alternativ kann die Taste erneut angetippt werden, um den Vorgang zu beenden.

Wird die Taste DRAHTEINFÄDELN gedrückt läuft der Drahtvorschub los. Dies dient zum spannungs- und gaslosen Einfädeln des Schweißdrahtes.

4.12 Enter/OK - JOBSTORE

Mit der Taste ENTER / OK können alle Eingaben oder Abfragen bestätigt werden.

JOBSTORE / Jobspeicher aufrufen - verwalten

JOB speichern:

Wenn die optimalen Schweißparameter für Ihre Schweißaufgabe gefunden wurden, können diese unter einem JOB abgespeichert werden.

Dazu die Taste JOBSTORE (Pos. 12) länger als 3 Sekunden gedrückt halten.

Im Display erscheint der erste frei Speicherplatz: z.B. JOB 003.

Sie können jetzt diesen Speicherplatz Nr.3 verwenden oder durch drehen am linken Drehknopf (Pos. 2) einen anderen freien Speicherplatz auswählen. Um die Daten zu sichern erneut die Taste JOBSTORE (Pos. 12) antippen. Die Daten sind nun gespeichert.

JOB überschreiben:

Wenn Sie einen JOB mit neuen Daten überschreiben möchten, stellen Sie die Maschine mit diesen Daten ein. Drücken Sie die Taste JOBSTORE (Pos. 12) länger als 3 Sekunden. Es wird wieder der erste freie Speicherplatz angezeigt (z.B. JOB 004).

Jetzt können Sie mit dem linken Drehknopf (Pos. 2) den zu überschreibenden JOB auswählen z.B. JOB 002. Tippen Sie jetzt kurz auf die JOBSTORE Taste (Pos. 12). Es erscheint die Sicherheitsabfrage ob Sie diesen JOB überschreiben möchten.

Wenn **JA**, drücken Sie die Sonderfunktionstaste 1 unterhalb des Wortes OK. Die Daten sind jetzt in diesem JOB gespeichert.

Wenn **NEIN**, drücken Sie die Sonderfunktionstaste 2 unterhalb des Wortes LOESCHEN. Der Vorgang ist damit abgebrochen. Verlassen Sie das JOBMENÜ mit der Taste MODE/MATERIAL (Pos. 5).

JOB auswählen:

Wenn der Modus JOB noch nicht aktiv ist, die Taste MODE/MATERIAL (Pos. 5) antippen bis die Schweißprozesse angezeigt werden. Jetzt mit dem linken Drehknopf (Pos. 2) solange drehen bis der Pfeil auf das Wort JOB zeigt. Mit der Taste ENTER / OK (Pos. 12) bestätigen.

In den oberen Displays erscheint z.B. JOB und 003.

Wenn Sie mehrere JOBs bereits abgespeichert haben, können Sie mit dem rechten Drehknopf (Pos. 5) zwischen den einzelnen JOBs wählen. Der im rechten Display angezeigte JOB ist immer aktiv. Die zu diesem JOB eingestellten Parameter werden im Display angezeigt.

JOB verlassen:

Um den Modus JOB zu verlassen, haben Sie 2 Möglichkeiten:

- 1. Taste JOBSTORE länger als 3 Sekunden gedrückt halten
- 2. Taste MODE drücken und einen anderen Schweißprozess wählen, z.B. MIG PULS

4.13 Sonderfunktionstaste 2

Mit dieser Taste sind Sonderfunktionen möglich.

Eine genaue Beschreibung befindet sich bei den jeweiligen Funktionen.

5. Sonderfunktionen / SETUP

Sonderfunktionen aufrufen:

Sonderfunktionstaste 1 (neben MODE/MATERIAL) länger als 5 Sekunden gedrückt halten, bis das Menü PARAMETER erscheint (in den oberen Displays erscheint ,SEtuP'.

Mit dem linken Drehknopf (Pos. 2) kann die gewünschte Sonderfunktion ausgewählt werden (►) und mit der Taste ,ENTER / OK' (Pos. 12) aufgerufen werden.

Erlaubt die Auswahl der folgenden Sonderfunktionen:

5.1 Jobs löschen

Mit dieser Funktion lassen einzelne Jobs löschen.

Im Menüpunkt Reset (Pkt. 8) können alle Jobs auf einmal gelöscht werden.

Mit dem linken Drehknopf (Pos. 2) kann der gewünschte Job ausgewählt werden (z.B. Job 002).

Durch tippen auf die Sonderfunktionstaste 2 ,unter Loesch' kommt die Sicherheitsabfrage JA oder NEIN.

Durch tippen auf JA wird der Job gelöscht, NEIN bricht den Vorgang ab.

5.2 Passwort einstellen / Bedienung sperren

Mit dieser Funktion kann nur die Benutzung des Sonderfunktionen / Setup Menüs gesperrt werden.

ACHTUNG: Wenn das Passwort vergessen wird, lässt sich diese Menü nicht mehr öffnen!!

Dies ist sinnvoll, wenn Sperrfunktionen (nächster Punkt) aktiviert sind. Mit dem rechten Drehknopf (Pos. 5) das Passwort zwischen 001 und 999 einstellen. Durch tippen auf die Taste ENTER / OK (Pos. 12) wird das Passwort gespeichert.

Wird das nächste Mal das Sonderfunktionen / Setup Menü aufgerufen, muss das Passwort eingegeben und mit Der Taste ENTER / OK (Pos. 12) bestätigt werden.

Um die Passwortsperre wieder zu deaktivieren, den Vorgang wiederholen und als Passwort 000 eintragen. Damit ist die Passwortsperre deaktiviert.

5.3 Sperr Funktionen

Hier können einzelne Funktionen für den Benutzer gesperrt werden. Mit dem linken Drehknopf (Pos. 2) kann die gewünschte Funktion ausgewählt werden (▶) und mit dem rechten

Drehknopf (Pos. 5) der Wert geändert werden.

Sperrebene: Keine – Alle Funktionen sind freigeschalten

Ebene 1 [1] - Alle Funktionen gesperrt bis auf die Schweißleistung und Lichtbogenlänge

Ebene 2 [2] – Alle Funktionen gesperrt

Benutzer [C] – Hier können individuelle Sperren eingerichtet werden Schweißleistung in % Lichtbogenlänge in % (Anzeige im Display z.B. [1]) Prozedurwechsel Ja/Nein Programmwechsel Ja/Nein Jobwechsel Ja/Nein

5.4 Extra Einstellungen / Sprache

Hier können verschiedene Funktionen ein- bzw. ausgeschalten werden. Mit dem linken Drehknopf (Pos. 2) kann die gewünschte Funktion ausgewählt werden (▶) und mit dem rechten Drehknopf (Pos. 5) der Wert geändert werden.

Sprache:	Deutsch – Englisch – Französisch – Italienisch – Spanisch
Ext.Schwe:	Menüpunkt 6 ,Extras Schweissen' ein- bzw. ausblenden (Ja oder Nein)
Kühlgerät:	Immer ein oder geregelt (es wird das Kühlgerät automatisch erkannt)
Bre.Einf.:	Draht durch drücken des Brennertasters einfädeln (Ja oder Nein)
Einfaed.:	Startgeschwindigkeit für das Drahteinfädeln festlegen (Standard 8.0 m/min)

5.5 Betriebsstunden / Energieverbrauch

Mit dem linken Drehknopf (Pos. 2) kann die gewünschte Funktion ausgewählt werden (►).

Unter diesem Punkt können folgende Betriebszeiten abgelesen werden:

Schweißzeit in 0 dd (Tage) 0:00:00 (STD:Min:Sek)
Zeit Maschine eingeschalten in 0 dd (Tage) 0:00:00 (STD:Min:Sek)
Normal - Mittel - Hoch: Hiermit kann der Stromverbrauch im Stand-by Modus
verringert werden. Es wird das Display schneller ausgeschalten.

5.6 Extras Schweissen (wenn unter Punkt 5.4 aktiviert)

Hier können spezielle Parameter für das Schweißen aktiviert werden.

Mit dem linken Drehknopf (Pos. 2) kann die gewünschte Funktion ausgewählt werden (►) und mit dem rechten Drehknopf (Pos. 5) der Wert geändert werden.

Zweitst I:	AUS – die Funktion Zweitstrom I2 ist nicht aktiv
	I2 STD - die Funktion Zweitstrom I2 ist mit eingeschränkten Parametern Fx aktiv
	12 Extras - die Funktion Zweitstrom 12 ist mit allen Parametern Fx aktiv
<u>Krater Ex:</u>	KR. STD - die Funktion Krater ist mit eingeschränkten Parametern Fx aktiv KR. Extras - die Funktion Krater ist mit allen Parametern Fx aktiv
<u>DPuls Ein:</u>	DP STD - die Funktion Doppelpuls ist mit eingeschränkten Parametern Fx aktiv DP Extras - die Funktion Doppelpuls ist mit allen Parametern Fx aktiv
LB Einst.:	Spannung – Lichtbogenlängenkorrektur über Spannungswerte in Volt DV-Geschw.– Lichtbogenlängenkorrektur über Drahtgeschwindigkeit in m/min

5.7 Zubehör

Hier können notwendige Einstellungen für die Hand- bzw. Roboterschweißen eingestellt werden. Setup Equipment (Handschweißen):

Hier müssen der aktuell verwendete Schweißbrenner und das Massekabel eingestellt werden. Mit dem linken Drehknopf (Pos. 2) kann die gewünschte Funktion ausgewählt werden (►).

Kühlgerät:	Optional – Kühlgerät wird automatisch erkannt oder
<u>Drahtv.:</u>	Optional – Drahtvorschubkoffer wird automatisch erkannt oder Zwingend – Drahtvorschubkoffer muss angeschlossen sein
<u>UPDW.B.:</u>	Brenner mit Display – Momentan noch nicht möglich Fehlt oder Optional – Brenner wird automatisch erkannt oder Zwingend – Brenner muss angeschlossen sein
<u>Brenner:</u>	Brennertyp einstellen. Es sind folgende Typen möglich: AIR – Luftgekühlter Brenner, H2o – wassergekühlter Brenner 150A, 200A, 250A, 300A, 350A, 400A, 450A, 500A PP8N / PP12N: Push-pull Brenner mit 8m bzw. 12m Länge

Kabel: Massekabel + Zwischenschlauchpaketlänge von 1 bis 100m

Robot Konfig (Roboterschweißen):

Nur notwendig und einstellbar in Kombination mit einem Schweißroboter.

5.8 Reset

Hier gibt es 3 verschiedene Resetfunktionen.

Mit dem linken Drehknopf (Pos. 2) kann die gewünschte Resetfunktion ausgewählt werden (►).

Löschen aller Jobs? – Hiermit werden nur die gespeicherten Jobs gelöscht (ALLE JOBS!!).

Durch tippen auf die Sonderfunktionstaste 2 ,unter OK' kommt die Sicherheitsabfrage JA oder NEIN.

Durch tippen auf JA werden alle Jobs gelöscht, NEIN bricht den Vorgang ab.

Werkseinstell? – Hiermit werden nur die Daten auf Werkseinstellung zurückgesetzt.

Durch tippen auf die Sonderfunktionstaste 2 ,unter OK' kommt die Sicherheitsabfrage JA oder NEIN. Durch tippen auf JA werden alle Daten zurückgesetzt, NEIN bricht den Vorgang ab.

Reset Alles? – Hiermit werden beide Funktionen von oben gemeinsam ausgeführt.

Durch tippen auf die Sonderfunktionstaste 2 ,unter OK' kommt die Sicherheitsabfrage JA oder NEIN.

Durch tippen auf JA wird Alles gelöscht, NEIN bricht den Vorgang ab.

5.9 Software Versionen

Hier werden ihnen die aktuell auf ihrer Maschine aufgespielten Softwareversionen angezeigt.

- Masch: Software Hauptplatine Schweißmaschine
- Kurve: Software der Schweißkurven
- DV 1: Software des Drahtvorschubkoffers 1
- DV 2: Software des Drahtvorschubkoffers 2
- Brenn: Software der Anzeige im Schweißbrenner (falls vorhanden)
- Robot: Software der Roboterschnittstelle (falls vorhanden)
- S/N...: Seriennummer der Gesamtmaschine (erneut auf ENTER / OK drücken)

5.10 Download / Upload

In diesem Menü können Sie Daten aus der Maschine auslesen und speichern oder Neue Daten und Parameter in die Maschine einspielen.

Mit dem linken Drehknopf (Pos. 2) kann die gewünschte Funktion ausgewählt werden (►) und mit dem rechten Drehknopf (Pos. 5) der Wert geändert werden.

<u>USB Down:</u>	 Fehler Dat: Fehlerdatei auslesen und speichern Schwei.Dat: Schweißdaten auslesen und speichern Jobs: Jobs auslesen und speichern Einstellun: Maschineeinstellung auslesen und speichern Alle Daten: Alle 4 oben aufgeführten Daten auslesen und speichern 		
<u>USB Uplo.:</u>	Jobs: Jobs in 6 Einstellun: Ma Alle Daten: All	die Maschine speichern aschineeinstellung in die Maschine speichern e Daten in die Maschine speichern	
<u>USB Upgr.:</u>	Bren.Upgr.: DV Upgr.: Rob.Upgr.: Masch.Upgr.:	Software Brennerplatine updaten Software Drahtvorschubplatine updaten Software Roboterinterface updaten Software Hauptplatine updaten	

5.11 Fehlermeldungen

Im Display werden alle erkannten Fehler mit ihrer Dauer in 00:00.00 (STD:Min:Sek) angezeigt. Die Fehlercodes sind im Kapitel 12 aufgelistet und beschrieben.

Um ein Menü zurück zu springen oder das ganze Menü zu verlassen, die Taste MODE/MATERIAL wiederholt antippen.

6. Bedienung / Schweißen

Vor dem Schweißen folgende Punkte beachten:

- Den Durchmesser der Kontaktspitze und den Drahtdurchmesser prüfen, beide müssen übereinstimmen.
- Den Taster Drahteinfädeln drücken, bis der Draht aus dem Brennerkopf austritt.
- Den Gasschlauch an der Gasflasche anschließen und die Gasflasche langsam öffnen.
- Am Druckminderer den Gasdruck auf einen geeigneten Wert einstellen (ca. 1,3-1,7 bar).
- Die Gasprüftaste betätigen und den Gasfluss auf einen Wert zwischen 8,5 und 20 l/min. einstellen Tipp: Drahtdurchmesser x 10 z.B.: 1,2mm x 10 = 12 l/min
- Die Anlage ist schweißbereit.

6.1 MIG PULS – MIG DoppelPULS - MIG/MAG Automatik

<u>HINWEIS:</u> Alle Funktionen und Parameter sind unter Punkt 4 Bedienelemente genau beschrieben. Hier wird nur der Funktionsablauf erklärt.

Bei diesen Schweißprozessen handelt es sich um automatisierte Schweißabläufe. Um die Bedienung zu vereinfachen, ist es normalerweise nur nötig, das richtige Schweißprogramm und die Schweißleistung einzustellen. Alle weiteren Parameter regelt die Maschine von alleine. Dies ermöglicht Bedienpersonal mit wenig Erfahrung gute Schweißergebnisse zu erzielen. Ein Vielzahl von Schweißprogrammen sind in der Maschine bereits hinterlegt. (siehe Programmwahltafel in der Drahtvorschubklappe)

Für die Schweißprozesse MIG PULS / DOPPELPULS / AUTOMATIK sind **alle** Betriebsarten (Pos. 3) verfügbar. Die dabei möglichen Parameter lassen sich mit den Funktionen Fx (Pos. 4) einstellen. Eine ausführliche Erklärung befindet sich unter Punkt 4 Bedienelemente.

Über die Taste MODE kann der gewünschte Schweißprozess z.B. MIG PULS eingestellt werden. Erneutes tippen auf die Taste MATERIAL öffnet das Material Menü. Mit dem linken Drehknopf (Pos. 2) lässt sich nun im Display das gewünschte Material einstellen. Durch tippen auf die ENTER / OK Taste werden die Parameter übernommen.

Abschließend muss jetzt noch die benötigte Schweißleistung eingestellt werden. Dafür stehen 3 Möglichkeiten zur Verfügung:

- Schweißspannung V (Pos. 7)

- Schweißstrom A (Pos. 1)

- Materialdurchmesser mm (Pos. 1)

Eingestellt können diese Werte dem linken Drehknopf (Pos. 2). Der jeweilige Wert wird im rechten oder linken Display angezeigt.

Die Maschine ist nun schweißbereit.

Für eine Optimierung des Schweißlichtbogens können jetzt noch die Lichtbogenlänge (Pos. 7) und die Drossel (Pos. 7) individuell eingestellt werden.

6.2 MIG/MAG Hand

<u>HINWEIS:</u> Alle Funktionen und Parameter sind unter Punkt 4 Bedienelemente genau beschrieben. Hier wird nur der Funktionsablauf erklärt.

Die Maschine in den Schweißprozess MIG HAND stellen.

Der Benutzer muss die Drahtgeschwindigkeit mit dem linken Drehknopf (Pos. 2) zwischen 0,6 und 22m/min und die Schweißspannung mit dem rechten Drehknopf (Pos. 8) zwischen 10V und 40V wie bei einer herkömmlichen MIG-Maschine selbst wählen.

Achtung: Es ist keinerlei Automatikfunktion in diesem Schweißprozess aktiv!

Die eingestellten Werte sind auf den Displays ablesbar. Während des Schweißvorganges werden Ist-Werte angezeigt. Die Parameter können bei laufendem Schweißprozess geändert werden.

Für den Schweißprozess MIG HAND sind **alle** Betriebsarten (Pos. 3) verfügbar. Die dabei möglichen Parameter lassen sich mit den Funktionen Fx (Pos. 4) einstellen. Eine ausführliche Erklärung befindet sich unter Punkt 4 Bedienelemente.

6.3 Sonderverfahren Cold – Pipe/Rohr – Power Arc – Fastarc (alle Optionen)

<u>HINWEIS</u>: Alle Funktionen und Parameter sind unter Punkt 4 Bedienelemente genau beschrieben. Hier wird nur der Funktionsablauf erklärt.

<u>COLD</u>

Der COLD Lichtbogen ist ein innovativer, speziell für das Schweißen von dünnen Blechen, Wurzellagen und zum MIG-Löten in allen Positionen entwickelter Lichtbogen.

Die mitgelieferten Schweißprogramme ermöglichen eine sehr hohe Schweißqualität, bei optimiertem Lichtbogen und minimaler Veränderung der metallurgischen Eigenschaften.

<u>VORTEILE</u>

- hervorragende Spaltüberbrückbarkeit (auch fallend)
- eine geringe Wärmeeinbringzone
- geringer Werkstückverzug
- Kein Durchfallen der Schmelze
- Schweißen von hohen Kohlenstoff und hochlegierten Stählen
- Keinerlei Beschädigung der Zinkschicht beim MIG-Löten
- Einsparungen bei Material- und Energiekosten
- Gute Beherrschbarkeit in Zwangslagen

ANWENDUNGEN

- Schweißen von dünnen Blechen mit geringem Wärmeeintrag
- Schweißen von Edelstahl und dünnen Aluminiumblechen
- MIG-Löten mit geringem Wärmeeintrag
- Optimal für Wurzelschweißungen

Leistungsbereich: 20A – 200A Kurven: Stahl 0,8/1,0/1,2mm, Edelstahl (Cr-Ni) 0,8/1,0mm, Cu-Si3 0,8mm

PIPE/ROHR

Der PIPE/ROHR Lichtbogen ist ein innovativer, speziell für die Wurzelschweißung in allen Positionen entwickelter Lichtbogen.

Die mitgelieferten Schweißprogramme erlauben eine extrem hohe Qualität, Leistung und Spaltüberbrückbarkeit, auch wenn mit unterschiedlichen Stegabständen gearbeitet werden muss. Der Prozess ermöglicht eine WIGoder Elektroden geschweißte Wurzelqualität mit einer weitaus kürzeren Schweißzeit.

VORTEILE

- perfekte und sichere Wurzelschweißung in steigender oder fallender Position
- höhere Schweißgeschwindigkeit gegenüber einer WIG oder Elektroden geschweißten Wurzel
- Präzise Lichtbogenkontrolle beim Schweißen von Rohren und Blechen mit beliebiger Dicke und in allen Positionen.
- Deutliche Reduzierung der Wärmeeinbringung in die Schweißnahtverbindungen
- Einfacher Schweißprozess , einfach zu erlernen und zu bedienen
- gleichbleibende Qualität

ANWENDUNGEN

- Rohr Wurzelschweißung
- Blech Wurzelschweißung

Leistungsbereich: 30A – 170A Kurven: Stahl 1,0/1,2mm, Metallpulver 1,2mm

POWER ARC

Der POWER ARC Lichtbogen ist ein innovativer, speziell für tiefen Einbrand und langen Stickout entwickelter Lichtbogen.

Die mitgelieferten Schweißprogramme erlauben einen konzentrierten und druckvollen Lichtbogen, der überall dort eingesetzt werden kann, wo ein tiefer Einbrand, länger Stickout (Engspalt) oder eine schmälere/kleinere Schweißnahtvorbereitung gefordert ist.

Vorteile

- Sicherer und tieferer Einbrand bei hoher Abschmelzleistung
- Höhere Schweißgeschwindigkeit gegenüber dem normalen Sprühlichtbogen
- Kleinere Schweißnahtvorbereitungen möglich
- Einsparung von Lohn-, Material-, Gas- und Energiekosten
- Optimale Flankenbindung, dadurch weniger Einbrandkerben
- einfache Handhabung
- nahezu Spritzerfrei
- Einsparung von Lohn-, Material-, Gas- und Energiekosten
- Optimale Flankenbindung, dadurch weniger Einbrandkerben
- einfache Handhabung

Anwendungen

- mittlere bis große Werkstückdicken
- Stahl, Edelstahl und Aluminiumverarbeitende Betriebe
- Automatisiert und Manuell verwendbar

Leistungsbereich: 70A – 330/400/500A Kurven: Stahl 1,2mm, Edelstahl (Cr-Ni) 1,2mm

FASTARC

Der FASTARC Lichtbogen ist ein innovativer, speziell für hohe Schweißgeschwindigkeiten bei Stahl und Nichteisenmetallen entwickelter Lichtbogen.

Durch die magnetischen Einflüsse entsteht ein engerer Lichtbogen, welcher die Wärmeeinbringung in das Material reduziert, und somit den Materialverzug und die Nacharbeitung verringert.

Die mitgelieferten Schweißprogramme erlauben einen hohe Schweißleistung im Kurz- und Mischlichtbogen.

Vorteile

- Hohe Schweißgeschwindigkeit
- verwendbar bei Stahl und Nichteisenmetallen
- nahezu keine Schweißspritzer
- durch die höhere Schweißgeschwindigkeit weniger Wärmeeinbringung
- Sicherer und tieferer Einbrand bei hoher Abschmelzleistung
- Höhere Schweißgeschwindigkeit gegenüber dem normalen Sprühlichtbogen
- Einsparung von Lohn-, Material-, Gas- und Energiekosten
- Optimale Flankenbindung, dadurch weniger Einbrandkerben
- einfache Handhabung
- Anwendungen
- mittlere bis große Werkstückdicken
- Stahl, Edelstahl und Aluminiumverarbeitende Betriebe
- Automatisiert und Manuell verwendbar

Leistungsbereich: 70A – 330/400/500A Kurven: Stahl 1,2mm , Edelstahl (Cr-Ni) 1,2mm

Bei diesen Schweißprozessen handelt es sich um automatisierte Schweißabläufe. Um die Bedienung zu vereinfachen, ist es normalerweise nur nötig, das richtige Schweißprogramm und die Schweißleistung einzustellen. Alle weiteren Parameter regelt die Maschine von alleine. Dies ermöglicht Bedienpersonal mit wenig Erfahrung gute Schweißergebnisse zu erzielen. Ein Vielzahl von Schweißprogrammen sind in der Maschine bereits hinterlegt. (siehe Programmwahltafel in der Drahtvorschubklappe)

Für die Schweißprozesse COLD / PIPE / POWER / FASTARC sind **alle** Betriebsarten (Pos. 3) verfügbar. Die dabei möglichen Parameter lassen sich mit den Funktionen Fx (Pos. 4) einstellen. Eine ausführliche Erklärung befindet sich unter Punkt 4 Bedienelemente.

Über die Taste MODE kann der gewünschte Schweißprozess z.B. MIG COLD eingestellt werden. Erneutes tippen auf die Taste MATERIAL öffnet das Material Menü. Mit dem linken Drehknopf (Pos. 2) lässt sich nun im Display das gewünschte Material einstellen. Durch tippen auf die ENTER / OK Taste werden die Parameter übernommen.

Abschließend muss jetzt noch die benötigte Schweißleistung eingestellt werden.

Dafür stehen 3 Möglichkeiten zur Verfügung:

- Schweißspannung V (Pos. 7) - Nicht bei COLD und PIPE/ROHR

- Schweißstrom A (Pos. 1)
- Materialdurchmesser mm (Pos. 1)

Eingestellt können diese Werte dem linken Drehknopf (Pos. 2). Der jeweilige Wert wird im rechten oder linken Display angezeigt.

Die Maschine ist nun schweißbereit.

Für eine Optimierung des Schweißlichtbogens können jetzt noch die Lichtbogenlänge (Pos. 7) und die Drossel (Pos. 7) individuell eingestellt werden.

6.4 Elektrodenschweissen / VRD

- **<u>HINWEIS</u>**: Alle Funktionen und Parameter sind unter Punkt 4 Bedienelemente genau beschrieben. Hier wird nur der Funktionsablauf erklärt.
- ACHTUNG: Im Schweißprozess ELEKTRODE liegt immer die Leerlaufspannung an den beiden Ausgangsbuchsen an. Vorsicht Kurzschlußgefahr und Stromschlag!

Die Maschine in den Schweißprozess ELEKTRODE stellen.

Es kann nun der gewünschte Schweißstrom eingestellt werden.

Des Weiteren können folgende Parameter individuell verändert werden.

⇒ Arc-Force

Die Arc-Force Funktion soll verhindern, dass die Elektrode während des Schweißens am Werkstück festklebt, die Elektrode ausglüht und somit unbrauchbar wird.

D.h. die Stromquelle überhöht kurzzeitig den Schweißstrom um das Festbrennen zu verhindern und gewährleistet so einen reibungslosen Schweißprozess, auch bei schwer zu verschweißenden Elektroden (Einstellung über die Taste Fx).

⇒ HOT Start

Ist eine Überhöhung des Schweißstromes während der Lichtbogenzündung. Dieses Überhöhen soll Bindefehler am Schweißnahtanfang reduzieren und kalte Hefter vorbeugen. (Einstellung über die Taste Fx).

→ Materialart Elektrode

Es können 3 verschiedene Arten von Elektroden verschweißt werden. Basische Elektroden (Basic), Rutile Elektroden (Rutil) und Chrom-Nickel Elektroden (Ni-Cr) (Einstellung über die Taste Material).

Anzeige VRD (Voltage reduction device)

VRD bedeutet Spannungsreduzierung am Ausgang. Diese Funktion sorgt dafür, dass im Leerlauf eine maximale Spannung von <13V an den Klemmen anliegt. Dies bedeutet aber schlechtere Zündeigenschaften der Elektroden. VRD aus(OFF): Uo= 63V, VRD an(ON): Uo=13V

Diese Funktion ist Standardmäßig deaktiviert. Um VRD einzuschalten, muss bei ausgeschaltenem Gerät die Frontplatte abgeschraubt werden, und auf der dahinterliegenden Platine der Jumper VRD wie im Bild dargestellt entfernt werden. Aktivierung erfolgt durch setzten des Jumpers.

Durch die folgende Faustformel kann ein Mittelwert für die Höhe des Schweißstromes ermittelt werden:

Schweißstrom = 50 x (Elektrodendurchmesser - 1)

Beispiel: 3,2 mm Elektrode

6.5 WIG-Schweißen mit LIFT-ARC-Funktion / Pulsen

- **<u>HINWEIS:</u>** Alle Funktionen und Parameter sind unter Punkt 4 Bedienelemente genau beschrieben. Hier wird nur der Funktionsablauf erklärt.
- ACHTUNG: Im Schweißprozess ELEKTRODE liegt immer die Leerlaufspannung an den beiden Ausgangsbuchsen an. Vorsicht Kurzschlußgefahr!

Beim Lift-Arc-Prinzip wird die Wolframelektrode auf dem Werkstück aufgesetzt. Dabei entsteht ein Kurzschluss. Ein begrenzter Zündstrom fließt, ionisiert die Luftstrecke und Zündet den Lichtbogen beim Abheben.

Vorbereitung: WIG-Brenner mit Gasventil am Minus-POL anschließen und Argon-Gas über separaten Gasschlauch zuführen.

Die JÄCKLE ProPuls reduziert Wolframeinschlüsse während des Kontaktzündens durch einen sanften Anstieg des Schweißstromes. Hierdurch wird weniger Wärme eingebracht. Die präzise und schnelle digitale Regeltechnik verhindert so die Einschlüsse und reduziert zusätzlich die oftmals entstehenden Einbrandkerben.

Mit einer Zusatzeinrichtung beim Beenden des Schweißvorganges (abziehen des Brenners) wird der Schweißstrom automatisch abgesenkt. Dies reduziert Endkrater und sorgt für ein sanft auslaufendes Schweißende.

Die Maschine in den Schweißprozess WIG Lift Arc oder WIG Puls Lift-Arc stellen. Es kann nun der gewünschte Schweißstrom eingestellt werden. Des Weiteren können folgende Parameter individuell verändert werden.

- ⇒ **Slope up:** Anstiegszeit beim Start bis zum Schweißstrom
- ⇒ Slope down: Abfallzeit am Ende bis zum Stopp
- ⇒ Stop Spg: Hier kann eine individuelle Spannung zum Abschalten eingestellt werden
- ⇒ Puls Delta: Höhe des Pulstromes in % zum Hauptstrom
- ⇒ **Puls Balance:** Die Balance des Pulsstromes (Verhältnis positive zu negative Halbwelle)
- ⇒ Puls Frequenz: Die Frequenz des Pulsstromes

Anhaltswerte für Wolframelektroden und Strombelastbarkeiten / jedoch immer mit den Herstellerangaben der Wolframelektroden vergleichen.

Wolfram- Elektroden	Haupt-	Farb-	Farb- Kennung Strombelastbarkeit der Wolframelektrode am – Pol und Wechselstrom					
Kurzzeichen	anwendung	Kerning	1,0	1,6	2,4	3,2	4,0	4,8
WP (WP- 00)* Reinwolfram	AC/DC Aluminium	grün	<65 <25	45-90 30-90	80-160 80-140	150-190 130-190	180-260 180-270	240-450 250-350
WT – 10 Thoriert 1,0%	DC hochlegierte u. rostfreie Stähle	gelb	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WT – 20 Thoriert 2,0%	DC hochlegierte u. rostfreie Stähle	rot	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WT – 30 Thoriert 3,0%	DC hochlegierte u. rostfreie Stähle	lila	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WZ – 40 Thoriert 4,0%	DC hochlegierte u. rostfreie Stähle	orange	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WZ - 08 Zirkonium 0,8%	Durch Zirkonium Geringe Verun- reinigungsgefahr	weiß	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WC – 20 * Ceriert 2,0%	DC und AC/DC Universell	grau	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WL - 10 Lanthaniert 1,0%	DC und AC/DC Universell für den Niedrigstromber.	schwarz	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WL - 15 Lanthaniert 1,5%	DC und AC/DC Universell für den Niedrigstromber.	gold	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WL - 20 Lanthaniert 2,0%	DC und AC/DC Universell für den Niedrigstromber.	blau	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-64 0 310-450
Lymox * Mischoxid	DC und AC/DC Universell	pink	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450

* die häufigsten Elektroden im Handschweißbetrieb

6.6 Schweißsequenzen / Jobsprung

Eine Schweißsequenz ist ein Ablauf von nacheinander abgespeicherten Schweiß - JOBS. Die Schweiß-Jobs müssen lückenlos in richtiger Reihenfolge (genau wie Einzelpunkte) gespeichert und mit einem Leerplatz vor und nach der Sequenz von anderen Schweißpunkten getrennt sein.

Ist die Sequenz in dieser Art fixiert, können komplexe Werkstücke ohne Unterbrechung geschweißt werden. Der Ablauf ist jederzeit neu abruf- und reproduzierbar.

Ist die Maschine mit einem UP/DOWN-Brenner ausgerüstet, kann während des Schweißens zwischen nebeneinander liegenden Schweißpunkten innerhalb der Sequenz hin- und her gesprungen werden. Ohne UP/DOWN-Brenner ist dies nicht möglich.

Wie schnell zwischen den einzelnen Punkten der Schweißsequenz gewechselt wird kann über die Funktionstaste Fx und der Einstellung Steigung (Stromanstieg zwischen Sequenzen) reguliert werden.

Hierfür die Fx Taste drücken und mit dem Drehschalter zur Steigung wechseln.

Beim Neustart muss nicht zwangsläufig mit dem ersten Punkt der Sequenz angefangen werden, da die Maschine den letzten aktiven Punkt im Speicher hat. Hierbei mit den Programmwahl-Tasten den entsprechenden Schweißpunkt wählen und anfangen.

Ist man am Anfang oder Ende der Sequenz angekommen, springt das Programm immer zum entgegen gesetzten Ende.

 z.B.:
 Anfang Job 5 ⇔ Job 6 ⇔ Job 7 ⇔ AU 8 Ende

 ⇔ Anfang Job 5 ⇔ Job 6 ⇔ Job 7 ⇔ Au 8 Ende

6.7 Schweißen von Aluminium

Für das Aluminiumschweißen sind an der Schweißanlage kleinere Anpassungen vorzunehmen, damit der reibungslose Schweißbetrieb gewährleistet bleibt:

⇒ Drahtvorschub:	einsetzen von speziellen Alu-Drahtvorschubrollen
⇒ □ Anpressdruck:	der Rollen reduzieren, eine Verformung des Drahtes ist unerwünscht
⇔ □ Brenner:	möglichst kurz wählen und mit einer Teflonseele ausstatten

⇒ Das Schweißgas Argon verwenden

7. Inbetriebnahme

7.1 Transport

Überprüfen sie bitte nach dem Auspacken die Lieferung auf Vollständigkeit und eventuelle Transportschäden. Jegliche Mängel, ob es sich um eine unvollständige Lieferung oder um Transportschäden handelt, sind unverzüglich dem Transportunternehmer, der Versicherung und der Firma JÄCKLE oder deren Fachhändler schriftlich mitzuteilen.

7.2 Anlage aufstellen

Achten Sie bei Aufstellung der Anlage auf ausreichenden Platz für Ein- und Austritt der Kühlluft, damit die angegebene Einschaltdauer erreicht werden kann (mindestens 1,5m). Die Anlage sollte nach Möglichkeit nicht Nässe, Schweißspritzern und dem direkten Funkenstrahl bei Schleifarbeiten ausgesetzt werden.

Achtung:

Metallische Ablagerungen im Geräteinneren können zu Kurzschlüssen und somit zur Zerstörung der Anlage führen! (Metallstaub in der Luft)

Die Anlage soll möglichst nicht im Freien bei Regen eingesetzt werden.

⇒Netzstecker anschließen (falls nötig)

Der Netzstecker darf nur von einer **Elektrofachkraft** entsprechend den Angaben auf dem Leistungsschild an das Netzkabel angeschlossen werden.

\Rightarrow \Box Schutzgasflasche anschließen

Die Schutzgasflasche hinten auf den Fahrwagen setzen und mit den Ketten sichern. Flaschendruckminderer anschließen und Anschlüsse auf Dichtheit prüfen.

⇒Schweißbrenner-Schlauchpaket anschließen

Schlauchpaket am Zentralanschluss anschließen. Bei wassergekühlten Schweißbrennern müssen die beiden Kühlwasserschläuche nach ihrer Farbkennzeichnung in die entsprechenden Anschlusskupplungen gesteckt werden (blau = Vorlauf, rot = Rücklauf).

⇒WIG-Brenner mit Gasventil anschließen

Der Brenner wird beim WIG-Schweißen in der Regel an den –POL angeschlossen um eine zu hohe Belastung der Wolframelektrode zu verhindern. Der Gasschlauch wird bei dieser Variante direkt mit dem Druckminderer an der Gasflasche verbunden.

⇒ Elektroden-Halter anschließen

Der E-Halter wird in der Regel auf dem +POL angeschlossen. Dies kann jedoch in Abhängigkeit vom Schweißzusatz (Schweißelektrode) auch der –POL sein. Hier sind die Angaben auf der Verpackung des Schweißzusatzes zu beachten.

Bei allen Verbindungen im Schweißstromkreis wie Werkstückanschluss, Brenneranschluss und Stromdüse ist für guten Kontakt zu sorgen. Ein schlechter Kontakt bewirkt einen hohen Übergangswiderstand, der zur Erwärmung und zu schlechten Schweißeigenschaften führt.

⇒Werkstückkabel anschließen

Grundsatz: Werkstückklemme am Werkstück gut leitend, d.h. nicht auf Farbe, Rost u.ä anklemmen. Stecker am Gerät durch eine Rechtsdrehung sichern.

Massekabel mit wenigstens 50mm² – Kabel verwenden. Sollte eine Verlängerung nötig sein, einen größeren Querschnitt benutzen.

Massekabel entsprechend dem Schweißverfahren am Gerät anschließen:

Schweißverfahren	PLUS-Pol	MINUS-Pol
MIG/MAG-PULS		
MIG/MAG-Doppel-PULS		
MIG/MAG-Automatik		
Cold / Pipe / Power / Fast		
Elektro Handschweißen		
WIG-LIFT-ARC / Pulsen		

Beim E-Handschweißen: Angaben auf der Verpackung des Schweißzusatzes zu beachten!!!

8. Drahtvorschub

Wechseln der Drahtvorschubrolle (4)

Für den verwendeten Draht muss jeweils die Drahtvorschubrolle mit der entsprechenden Nut eingesetzt werden.

Zum Austauschen der Drahtvorschubrollen ist die Rändelschraube (5) herauszudrehen.

Es ist darauf zu achten, dass die Nut der Drahtvorschubrolle mit den Drahtführungsrohren (6) eine Flucht bildet.

Abbildung 8.1 Drahtvorschub

Die Drahtvorschubrollen haben zwei Durchmesser auf einer Rolle. D.h. beim Einbau der Rollen muss darauf geachtet werden, dass die richtige Nut mit den Drahtführungsrohren fluchtet. Dies ist gegeben, wenn der verwendete Drahtdurchmesser von vorne auf der Rolle ablesbar ist.

Der **Anpresspunkt der Drahtvorschubrolle** ist mit der Federdruckeinheit (7) so einzustellen, dass der Draht bei gestrecktem Schlauchpaket einerseits gleichmäßig gefördert wird und andererseits nicht ausknickt, sondern durchrutscht, wenn der Draht am Stromdüsenaustritt festgehalten wird.

Spulenbremse

Der Drahtaufnahmedorn (2) ist mit einer Spulenbremse ausgestattet, die ein Nachlaufen der Drahtspule (3) beim Anhalten des Drahtvorschubmotors verhindert. Durch Rechtsdrehen der Inbusschraube (1) kann die Bremswirkung vergrößert werden.

Drahtförderung im Brennerschlauchpaket

Der Reibungswiderstand des Schweißdrahtes in der Drahtführungsspirale vergrößert sich mit der Länge des Schlauchpaketes. Das Brennerschlauchpaket sollte deshalb nicht länger als nötig gewählt werden.

Bei der Verarbeitung von **Aluminium-Schweißdraht** empfiehlt es sich, die Drahtführungsspirale durch eine Teflon-Drahtführung zu ersetzen. Die Länge des Brennerschlauchpaketes sollte nicht mehr als 3 m betragen.

Es ist zu empfehlen, die Drahtführungsspirale und das Drahtführungsrohr nach dem Verschweißen einer Rolle Draht mit Pressluft auszublasen. Die Gleitfähigkeit der Drahtführungsspirale verschlechtert sich in Abhängigkeit von der geförderten Drahtmenge und den Drahteigenschaften. Bei einer merkbar schlechteren Drahtförderung ist die Drahtführungsspirale auszuwechseln.

9. Pflege, Kühlmittel JPP und Sicherheitsprüfung

Vor allen Pflege- und Wartungsarbeiten Netzstecker ziehen!

Die Anlage ist weitgehend wartungsfrei. Folgende Wartungsarbeiten sollten jedoch durchgeführt werden:

- Stromdüse und Gasdüse regelmäßig von Schweißspritzern und Verunreinigungen säubern. Düsen nach Reinigung mit Trennmittel versehen, um die Spritzerhaftung zu verringern.
- ⇒ Stromdüse regelmäßig auf Abnutzung und Beschädigung prüfen, rechtzeitig wechseln.
- Innenraum der Anlage je nach Verschmutzungsgrad mit Staubsauger reinigen. Bei Anlagen mit Wasserkühlung (wassergekühlter Schweißbrenner), ist darauf zu achten, dass die Kühlrippen des Wasserkühlers nicht mit Staub zugesetzt sind.

- NUR JÄCKLE Kühlflüssigkeit JPP verwenden (Best.-Nr. 900.020.400)

- Ungeeignete Kühlmittel können zu Sachschäden und zum Verlust der Herstellergarantie führen. Kein Wasser oder andere Kühlmittel beimischen.
 - Nicht ohne Kühlflüssigkeit schweißen! Tank muss immer voll sein.
- Pumpe darf nicht trocken laufen, auch nicht für kurze Zeit. Pumpe entlüften.

 Gesundheitsschädlich – darf nicht in Hände von Kindern gelangen! SICHERHEITSDATENBLATT auf <u>www.jaeckle-sst.de</u> abrufbar
 Frostsicher bis -30°C

<u>Hinweis:</u>

Die Anlage muss aus Sicherheitsgründen einmal im Jahr durch die Fa. JÄCKLE oder einen anderen autorisierten Fachmann einer Sicherheitsprüfung nach DIN IEC 60974 Teil 4:

Sicherheit, Instandhaltung und Prüfung von Lichtbogenschweißeinrichtungen im Gebrauch

unterzogen werden!

10. Option Potentiometer Fernregelung und Push-Pull Brenner

Option Fernregelung über Potentiometer:

Es besteht die Möglichkeit, an diese Maschine eine Fernregelung mit 2 Potentiometern anzuschließen. Mit dem Poti 1 kann die Schweißleistung, mit dem Poti 2 die Lichtbogenlänge reguliert werden. Werden die Potis angeschlossen, wird automatisch die Regelung in der Steuerbox und die up/down Funktion am Brenner deaktiviert.

Die Leitung sind standardmäßig nicht an die 7-polige Dose im Koffer angeschlossen.

Im Bedarfsfall müssen die Leitungen an eine weitere Dose angeschlossen werden.

Die Belegung ist unter Punkt 26 – Schaltpläne, Seite 72 beschrieben.

Ground \rightarrow graue Leitung, +10VDC \rightarrow hellblaue Leitung, Poti 1 \rightarrow grüne Leitung, Poti 2 \rightarrow blaue Leitung

ACHTUNG: Es muss wie im Schaltplan eingezeichnet zwingend eine Schutzdiode in die Groundleitung eingebaut werden!!

Option Push-Pull Brenner:

ACHTUNG: es darf nur ein Push-Pull System für 24V DC angeschlossen werden!! 42V bzw 48V Systeme sind nicht zugelassen und führen zu Schäden!!

Die Leitung sind standardmäßig nicht an die 7-polige Dose im Koffer angeschlossen. Im Bedarfsfall müssen die Leitungen an eine weitere Dose angeschlossen werden. Die Belegung ist unter Punkt 26 – Schaltpläne, Seite 72 beschrieben.

+24V DC (Push-Pull) \rightarrow weiße Leitung, Ground \rightarrow schwarze Leitung

11. Störungen, Fehler, Ursache und Beseitigung

Fehler und Defekte an der elektrischen Anlage dürfen nur von einer Elektrofachkraft behoben werden.

Störungen/Fehler	Ursache	Beseitigung
Netzkabel angeschlossen und Hauptschalter ein / Keine Anzeige im Display	Netzspannung ausgefallen	Netzsicherung prüfen, Netzkabel prüfen
Draht knickt zwischen Drahtvorschubrolle	Anpressdruck der Drahtvor- schubrollen zu groß	siehe Kapitel 8 Drahtvorschub
aus	Abstand zwischen Drahtvorschubrolle und Führungsrohr zu groß	Abstand prüfen / Drahtführungsrohr neu justieren
Unregelmäßiger Drahtvorschub	Draht spult schlecht von der Drahtspule ab	Drahtrolle prüfen / neu einlegen
	Drahtaufnahmedorn läuft schwer	Aufnahmedorn überprüfen
	falsche Drahtvorschubrolle	siehe Kapitel 8 Drahtvorschub
	Drahtführungsrohr bzw. Drahtführungsspirale verschmutzt/defekt	siehe Kapitel 8 Drahtvorschub
	Stromdüse verstopft / defekt	Stromdüse reinigen / wechseln
	Schweißdraht verschmutzt / angerostet	Schweißdraht wechseln
	Drahtführungsrohr fluchtet nicht mit der Nut der Drahtvorschubrolle	siehe Kapitel 8 Drahtvorschub
Poröse Schweißnaht	Unsaubere Werkstückober- fläche (Farbe, Rost, Öl, Fett)	Oberfläche reinigen
	Kein Schutzgas (Magnet- ventil öffnet nicht)	Magnetventil prüfen / wechseln
	Zu wenig Schutzgas	Schutzgasmenge am Druckminderer prüfen
		Gasführung auf Gasverlust prüfen mit Gasmessrohr
	Gasdüse verschmutzt	Gasdüse reinigen
Draht brennt bei Schweißbeginn in die Stromdüse zurück	Drahtvorschub schiebt schlecht, Drahtvorschub- rollen rutschen durch	siehe Kapitel 8 Drahtvorschub

12. Automatische Fehlerdiagnostik

Im Fehlerfall werden Fehlercodes in den Displays dargestellt.

Es gibt 2 Arten von Fehlern:

- Fehlermeldungen löschen sich automatisch (kurzzeitige Fehler)
 Fehler Muss durch aus- und einschalten der Anlage gelöscht werden (größere Störung / Defekt)

Fehlernummer	Fehlerbeschreibung und mögliche Diagnose
E0.0	FEHLER SPANNUNGSVERSORGUNG
	Der Fehler kann nur beim Einschalten auftreten, nicht beim normalen Betrieb der
	Schweißanlage.
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abgelegt.
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E0.1	UNTERSPANNUNG UND ÜBERSPANNUNG
	Fehlermeldung löscht sich automatisch.
E0.2	ÜBERSPANNUNG
	Fehlermeldung löscht sich automatisch.
E0.3	UNTERSPANNUNG
	Fehlermeldung löscht sich automatisch.
E0.4	ÜBERSTROM
	Fehlermeldung löscht sich automatisch.
E0.5	FERNREGLER
	Fehlende Versorgung des Fernreglers.
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E0.6	WASSERKUHLGERAT
	Die Maschine erwartet ein Signal vom Kühlgerät.
	- Leitungen prüfen
	- JACKLE Kundenservice kontaktieren
	Loschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E0.7	DV-MOTOR FEHLER
	Motor im Drantvorschubkoner onne Funktion.
	- Motor pruten
	- JACKLE Kundenservice kontaktieren
E0.8	
L0.0	Die Maschine erwartet das Signal vom DV-Koffer
	- Zwischenschlauchpaket überprüfen
	- JÄCKI E Kundenservice kontaktieren
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E0.9	CAN FEHLER
	Die CAN Kommunikation zwischen Maschine und DV – Koffer ist unterbrochen.
	- Zwischenschlauchpaket überprüfen
	- JÄCKLE Kundenservice kontaktieren
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
T°C	ÜBERTEMPERATUR
	Die Maschine hat wegen Überhitzung abgeschalten.
	Maschine bei laufenden Lüftern mehrere Minuten stehen lassen, bis die Meldung
	erlischt.
	Fehlermeldung löscht sich automatisch.
H2o	KUHLANLAGE DRUCK
	Kühlgerät wird von der Anlage erkannt, aber der Druckschalter ist ohne Funktion.
	- Wasserstand prüfen, ggf. auffüllen
	- Leitungen überprüfen
	- Druckschalter auf Funktion prufen
E4.0	Loschen des Feniers durch erneutes aus- und einschalten der Anlage.
E1.0	NUNFIG DATETFEHLT (KONTIGUTATION DATETFENIT)
	Interner Femer III der Soltware.
	- JAONLE NUHUEHSEIVIUE KUHIAKIIEHEH Dieser Fehler wird nur auf dem Dieplay angezeigt, aber nicht im Fehlerensicher
	ahaeleat
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage
	Losenen des remeis durch emedies aus- und emschalten der Anlage.

Fehlernummer	Fehlerbeschreibung und mögliche Diagnose
E1.1	BENUTZER EINSTELLUNG FEHLT
	Interner Fehler in der Software.
	- JÄCKLE Kundenservice kontaktieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abgelegt.
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
F1 2	BRENNER FINSTELLUNG FEHLT
L 1.2	Interner Eehler in der Software
	- JÄCKI E Kundenservice kontaktieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	ahaeleat
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage
F1 3	KALIBRATIONS FINST FEHLT (Kalibrierungsdatei fehlt)
L1.5	Interner Fehler in der Software
	- IÄCKI E Kundensenvice kontaktieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abaeleat
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage
	Nicht verwendet
E1.4	Nicht verwendet
E1.5	
L1.0	Interner Fehler in der Software
	- IÄCKI E Kundenservice kontektieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abaologt
	abyeiegt. Löschen des Fehlers durch erneutes aus- und einschalten der Anlage
	Interner Fehler in der Seftware
	- IÄCKI E Kundenservice kontektieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abaeleat
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage
F1.8	
L1.0	Interner Fehler in der Software
	- JÄCKI E Kundenservice kontaktieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abgelegt
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage
F1 9	SCHWEISSER FINST FEHLT (Schweisser Einstellung fehlt)
21.0	Interner Fehler in der Software
	- JÄCKI E Kundenservice kontaktieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abgelegt
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E2.0	SYSTEM FEHLER
	Interner Fehler in der Software.
	- JÄCKLE Kundenservice kontaktieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abaeleat.
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E3.1	KÜHLANLAGE DRUCK
	Kühlgerät wird von der Anlage erkannt, aber der Druckschalter ist ohne Funktion.
	- Wasserstand prüfen, ggf. auffüllen
	- Leitungen überprüfen
	- Druckschalter auf Funktion prüfen
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.

Fehlernummer	Fehlerbeschreibung und mögliche Diagnose
E3.2	Kurzschluss SCHWEIßSPANNUNG
	Der Fehler tritt nach einem Kurzschluss von mehr als 1,2 Sekunden zwischen den
	Ausgangsklemmen der Maschine auf.
	Um den Fehler zu beheben, muss der Kurzschluss beseitigt werden, damit die
	Spannung am Brenner über den Grenzwert steigt. Jetzt wird der Fehler nicht mehr
	angezeigt, und das Schweißgerät kehrt in den Modus zurück, in dem es sich vor dem
	Fehler befand. Falls der Brennertaster noch gedrückt ist, muss er freigegeben und
	danach nochmals gedrückt werden, um mit dem Schweißvorgang fortzufahren.
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E3.3	MOTORGESCHWINDIGKEIT FEHLER
	Der Motor wird angesteuert aber das Signal über die Geschwindigkeit fehlt.
	Kabel am Inkrementalgeber prüfen.
	- JÄCKLE Kundenservice kontaktieren
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E4.0	LETZTES SETUP UNZULASSIG
	Interner Fehler in der Software.
	- JACKLE Kundenservice kontaktieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abgelegt.
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E4.1	JOBS FALSCH
	Interner Fehler in der Software.
	- JACKLE Kundenservice kontaktieren
	bieser Ferner wird nur auf dem Display angezeigt, aber nicht im Fernerspeicher
	abyeiegt.
E4.2	
E4.2	Interner Fehler in der Software
	- IÄCKI E Kundenservice kontaktieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abaeleat
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E4.3	MAG MAN SPEZIAL FUNKTION FALSCH
	Interner Fehler in der Software.
	- JÄCKLE Kundenservice kontaktieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abgelegt.
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E4.4	SPEZIALFUNKTIONEN (Fx) MIG-PULS UNGÜLTIG
	Interner Fehler in der Software.
	- JÄCKLE Kundenservice kontaktieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abgelegt.
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E4.5	SPEZIALFUNKTIONEN (Fx) MIG-DOPPELPULS UNGÜLTIG
	Interner Fehler in der Software.
	- JACKLE Kundenservice kontaktieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abgelegt.
FF 0	
E5.0	MAG PROGRAMME FERLEN
	- IÄCKI E Kundenservice kontektieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abaeleat
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage
F5 1	SCHWEISSPROGRAMME MIG-PUI S NICHT VORHANDEN
	Interner Fehler in der Software.
	- JÄCKLE Kundenservice kontaktieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abgelegt.
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.

Fehlernummer	Fehlerbeschreibung und mögliche Diagnose
E5.2	Nicht verwendet
E5.3	ELEKTRODEN PROGRAMME FEHLEN
	Interner Fehler in der Software.
	- JÄCKLE Kundenservice kontaktieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abgelegt.
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E5.4	WIG PROGRAMME FEHLEN
	Interner Fehler in der Software.
	- JÄCKLE Kundenservice kontaktieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abgelegt.
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E5.5	MAG MAN. PROGRAMME FEHLEN (MAG Manuell Programme Fehlen)
	Interner Fehler in der Software.
	- JACKLE Kundenservice kontaktieren
	Dieser Fehler wird nur auf dem Display angezeigt, aber nicht im Fehlerspeicher
	abgelegt.
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E6.0	DV-KOFFER CAN Kommunikation fehlerhaft
	- JACKLE Kundenservice kontaktieren
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
E6.1	ROBOTERER INTERFACE Kommunikation fehlerhaft
	Dieser Fenier wird nur auf dem Display angezeigt, aber nicht im Fenierspeicher
	abgelegt.
F C 0	DEENNERDICELAV Kommunikation fablashaft
E0.2	DREINNERDISPLAT Kommunikation tenternalt Disser Fehler wird nur auf dem Dienley angezeigt, ober nicht im Fehlerensicher
	bieser Ferner wird nur auf dem Display angezeigt, aber nicht im Fernerspeicher
	abyeiegt. Löschen des Fehlers durch erneutes aus- und einschalten der Anlage
E7.0	EERNBEDIENIING Febler
E7.0	FERNBEDIENONG Feillei Es wird ein Fehler mit der Fernbedienung erkannt
	- Falsche Fernhedienung angeschlossen
	- Kabelverbindung fehlerhaft
	- JÄCKLE Kundenservice kontaktieren
	Wird der richtige Fernsteller angeschlossen, löscht sich der Fehler von allein
	Löschen des Fehlers durch erneutes aus- und einschalten der Anlage.
AUT ADJ	Dieser Alarm tritt bei Überschreiten des Leistungsgrenzwertes auf. Der Alarm erscheint
Power Limit	alle 1.5 Sekunden im Wechsel mit der Standardanzeige. Trotzdem setzt die Maschine
	das Schweißen mit einer eingeschränkten Leistungsabgabe. unter Einhaltung der auf
	dem Maschinenschild angegebenen Werte fort.

Operating manual

Pro Puls 330,400,500

Digital Pulse Welding machine

General information's:

These operating instructions are intended to ensure safe and efficient work with this welding unit. Prior to initial operation of the unit, read the instructions carefully.

The information contained in this manual should be made available to all operational staff. These in structions should always be kept ready-to-hand, near the machine.

Electromagnetic compatibility EMC (IEC 60974-10):

WARNING: This class A welding unit is not provided for use in housing areas, where the electric power supply comes from a public low voltage supply.

It may possible, that through wire fixed or radiate disturbances, it isn't easy to guarantee electromag netic compatibility in these areas.

INFORMATION: The user is responsible for the trouble, which the machine generates during the operation. He must rate and consider possible electromagnetic problems in the neighbourhood.

Warranty:

INFORMATION: Improper repair or servicing, technical modifications of the product, unauthorized, not strictly from JÄCKLE GmbH permitted modifications, as well as carelessness at the installation or use, or the nonobservance of care in own affairs lead to the extinction of every warranty.

DECLARATION OF CONFORMITY

Manufacturer:

Jäckle Schweiß- und Schneidtechnik GmbH Riedweg 4+9 D – 88339 Bad Waldsee Germany

We declare, that below mentioned current source corresponds to the safety requirements of the recommendations.

Name of unit:s:	Welding power sources for MIG / MAG
Type of units:	ProPuls 330, 400, 500

Relevant EC recommendations:

EMC – Directive	2004/108/EG	(since 20.07.2007)
Low voltage Directive	2006/95/EG	(since 16.01.2007)

Applied harmonized standards:

EN 60 974 – Part 1	Arc welding equipment / Welding power sources
EN 60 974 – Part 2	Arc welding equipment / Liquid cooling systems
EN 60 974 – Part 5	Arc welding equipment / Wire feeders
EN 60 974 – Part 10	EMC product standard for arc welding equipment

Additional information:

Restrictive use, Class A equipment

Jäckle Schweiß- und Schneidtechnik GmbH

Jachle

Reinhard Jäckle
<u>Contents</u>

13	Brief description	35
14	Technical data	36
15.	Safety requirements	
	15.1 General Information's	37
	15.2 Electrical Information's Fire	37
	15.3. Personal Protection	
	15.4 Welding fumes and gases	38
	15.5. Danger from shielding-gas cylinder	38
	15.6 EMC and safety inspection	30
	15.7 Disposal of the machine	30
16	Control elements	40
10.	16.1 Material strength / welding current / wire speed	4 0 /1
	16.2 Loft dial (loft dienlav)	
	16.3 Trigger mode 2-step / 4-step / 2-step crater-fill / 4-step crater-fill - current 12 / Spot / stitch	
	16.4 Ex / parameter description of the wolding processos MIC/MAC:	
	16.4 Ex / parameter description of the welding processes TIG / Electrode:	4 3 11
	16.5 Wolding process / material selection	44 11
	16.6 Special function button 1	44
	10.0 Special function button 1	45
	16.7 Arc length / weiding voltage / weiding choke	43
	16.8 Diai 2 (right display)	45
	16.9 Graphic display	45
	16.10 Gas test / 11 wire inch	46
	16.12 Enter/UK - JOBSTORE	46
	16.13 Special function button 2	46
17.	Special functions / SETUP	47
	17.1 Copy/Delete Jobs	47
	17.2 Password	47
	17.3 Functions Block	47
	17.4 Advanced Selections / language	47
	17.5 Working indo / energy consumption	47
	17.6 Advanced Welding (if activated under point 5.4)	48
	17.7 Equipment Layout	48
	17.8 Reset	48
	17.9 STW - Software versions	48
	17.10 Download / upload	48
	17.11 Error codes	49
18.	Operation / welding	49
	18.1 MIG PULSE – MIG Double PULSE - MIG/MAG automatic	49
	18.2 MIG/MAG Manual	50
	18.3 Special process Cold – Pipe – Power Arc – Fastarc (all options)	50
	18.4 Electrode (MMA) welding / VRD	52
	18.5 TIG welding with LIFT-ARC function / pulsed	53
	18.6 Welding sequences / changing between jobs	54
	18.7 Welding aluminium	55
19.	Start-up	55
	19.1 Transport	55
	19.2 Setting up the welder	55
20.	Wire feed	57
21.	Maintenance, coolant JPP and safety check	58
22.	Option Potentiometer remote control and Push-pull torch	58
23.	Trouble-shooting	
24.	Automatic error diagnostics	60
25	Ersatzteile / spare parts	
26	Schaltpläne / circuit diagrams	70
27	Schweißprogramme / Program table:	73

13. Brief description

Based on the latest, digitally-controlled IGBT inverter technology, this compact, synergic, multi-function machine makes it possible to perform high-quality welding, in MIG/MAG and in MIG pulsed, on all materials and particularly on stainless steel and aluminium, by minimizing any reworking job after welding thanks to its spatter free performance.

On the technological cutting edge, sturdy, easily transported, and simple to use, **Pro Puls** represents the ideal solution for any application requiring high precision and repeatability of the achieved results, by making this power source particularly suitable for the most qualified jobs in any industrial application. The high versatility of **Pro Puls** also achieves optimal performances both in TIG by "lift" mode striking and in MMA welding.

The main feature of the welding units are:

- Innovative and user friendly design;
- Metal bearing structure with front panel in special anti-shock material;
- Robust handles built into the chassis;
- Control panel protected against accidental impact;
- Synergic digital control of all the welding parameters;

• Spatter free exceptional welding characteristics in both **MIG/MAG**, **MIG Pulsed** and **MIG Dual Pulsed** on any material and with any gas;

• High welding performance in both MMA and TIG by "lift" mode striking;

• Exclusive SWS "Smart Welding Stop" system at the end of TIG welding. Lifting up the torch without switching off the arc will introduce a slope down and it will switch off automatically;

• Ability to store personalized welding programs;

- · Monitoring and repetition of welding parameters;
- User friendly and easy-to-use selection and recalling of the parameters and welding programs;
- Low energy consumption;

• "Energy Saving" function to operate the power source cooling fan and the torch water cooling only when necessary;

• Auto-diagnostic feature for trouble shooting;

• Initial and crater welding cycle control;

• With the special MIG torches you can adjust the welding parameters at a distance straight from the torch.

• Cast aluminium wire feeder with 4 large size rolls for precise and constant wire feeding;

- Welding current SYNERGIC adjustment;
- Arc length FINE adjustment;
- Wire test;
- Gas test.

MIG/MAG-pulse: MIG/MAG-double Pulse	Spatter less pulse arc welding on all current materials and shielding gases with max. 20% CO ₂ . A special ignition of the arc and the fast reaction to short - circuits in case of unavoidable small problems of the wire or the jig guarantees the highest process stability. The Hybrid is well suited for all present solid and flux cored wires.
MIG/MAG-normal:	Low spatter for short, normal and spray arc welding with solid wire (GMA) and flux cored wire. Highest process stability, especially at the lower current range for all shielding gases from 100% CO_2 to 100% Argon.
Stick electrode:	Optimal characteristics with high precise direct current for all types (MMA) of electrodes from acid to basic. Integrated hot-start and arc-force function for best welding results for all jobs. Large capacity for special electrodes with more than 100 % deposition rate.

MIG-brazing: Optimize welding curves for Cu-brazing with low bring in of temperature.

14. Technical data

Power source	ProPuls 330	ProPuls 400	ProPuls 500
Supply voltage, 50/60 Hz	400V (320V - 480V) 3 Phase	400V (320V - 480V) 3 Phase	400V (320V - 480V) 3 Phase
Fuse	16 A slow	32 A slow	32 A slow
Max. power draw	18,8 kVA	25,5 kVA	32 kVA
Cos phi	0,9	0,9	0,9
Set-point range Step less	10 - 330 A	10 - 400 A	10 - 500 A
Operating voltage	15 – 30,5 V	15 - 34 V	10 - 39 V
Open circuit voltage	63 V	70 V	70 V
Duty cycle 40 % (40 °C)	330 A / 30,5 V		
Duty cycle 50 % (40 °C)		400 A / 34 V	500 A / 39 V
Duty cycle 60 % (40 °C)	300 A / 29 V	370 A / 32,5 V	460 A / 37 V
Duty cycle 100 % (40 °C)	280 A / 28 V	330 A / 30,5 V	380 A / 33 V
System of protection	IP 23	IP 23	IP 23
Insulation class	Н	Н	Н
System of cooling	F	F	F
Weight complete	107 kg	119 kg	124 kg
Dim. L x B x H (mm	1050 x 540 x 970		

Wire feeder PP4:

Wire feed rate	0,5 – 22 m/min
Diameter of wire	0,8 – 1,2mm
Wire feed motor with four-roller drive system	100W / 42V
S	Authorised for welding under increased electrical hazard

Generator operation:

()

The generator must have 30% more power as the welding unit.

Example: 19kVA (unit) + 30% = 25kVA. The generator for this unit must have 25kVA.

A generator with less power will damage the Jäckle welding unit as well as the generator himself and is disallowed.

15. Safety requirements

15.1. General Information's

This welding unit has been manufactured in accordance with the relevant international standards. However, improper use or manipulation of the machine may cause hazards.

The following safety instructions must be strictly observed:

a) This unit is exclusively intended for the MIG/MAG welding process. Welding operations with the MIG/MAG welding unit should be carried out be qualified persons. Service personnel must be duly informed of all safety rules.

- b) Electrical repair work must be carried out by qualified electricians
- c) Always disconnect mains prior to servicing, maintenance, and repair work and before opening the casing.
- d) Keep the machine always in good conditions.
- e) Modifications at the machine are not allowed.

than 10m). They might catch fire from sparks or hot slag.

defective insulation must be repaired immediately.

People, who work near the machine, must also be protected against possible hazards.

15.2. Electrical Information's, Fire

The welder must be protected against arc radiation and burning by wearing adequate protective clothing such as a leather apron, leather jacket, leather gloves etc.

Inflammable substances must be kept away from the welding area (distance more

Mains cable, hose pack, and work piece cable must be perfectly insulated. Any

15.3. Personal Protection

The face and the eyes must be protected by a welder's shield with lenses - protection category corresponding to the intensity of current.

Persons working close by must also be adequately protected from arc radiation.

To protect your hearing against noise, wear ear-protectors!

Protect your hands and feet by wearing stout footwear and appropriate gloves.

15.4. Welding fumes and gases

The air inhaled by the welder must be kept free from harmful substances caused during welding process. The ventilation required depends on the size of the enclosed working area, the type of material used and the duration of the welding process. In some cases, ventilation (e.g. fan) may be sufficient, but usually an extraction system is necessary where harmful substances are produced.

15.5. Danger from shielding-gas cylinder

Shielding-gas cylinders contain pressurized gas and may explode if they are damaged. As shielding-gas cylinders are an integral part of the overall welding outfit, they also have to be treated with great care.

Protect shielding-gas cylinders containing compressed gas from excessive heat, mechanical impact, slag, naked flames, sparks and arcs.

Mount the shielding-gas cylinders in the vertical and fasten them in such a way that they cannot fall over (i.e. as shown in the instruction manual).

Keep shielding-gas cylinders well away from welding circuits (and, indeed, from any other electrical circuits).

Never hang a welding torch on a shielding-gas cylinder.

Never touch a shielding-gas cylinder with a welding electrode. Accessories.

15.6. EMC and safety inspection

Apart from the instructions given in this operating manual, the general safety standards, in particular the rules for prevention of accidents must be observed. The rules contain additional information's about the prevention of radiation, smoke, combustion, electric shock, fire and explosion.

Furthermore, we point out that in some operative ranges where, despite the observance of radiation limits, this welding unit can cause electromagnetic interferences which are the responsibility of the user.

This means that in the domain of hospitals, for instance, the function of electro medical units, data-processing equipment and the like (ECG, PC etc.) may be impaired.

Before putting the welding unit into service, please make sure to inform the authorities in charge of the above mentioned equipment.

If you wish to use the cutting unit in domestic areas, special precautions have to be taken as well.

Adequate assistance in assessing the operative range and minimizing electromagnetic interferences (e.g. use of screening lines) may be obtained from the Electromagnetic Compatibility Standards for Arc Welding Systems.

EN 60 974-10 (Electromagnetic compatibility EMC)

Safety inspection:

The owner/operator is obliged to have a safety inspection performed on the machine at least once every 12 months.

Observe the relevant national and international standards and directives in connection with the safety inspection.

More detailed information on safety inspections and calibration is available from your regional or national service centre, who will be pleased to provide you with copies of the necessary documents upon request

e.g.: EN 60974-4 (Safety, maintenance and inspection of arc welding equipment in use)

ATTENTION:

This device is not suitable for defrost tubes or similar non welding agitation's!!!

15.7. Disposal of the machine

Do not dispose of electrical equipment together with normal waste! In observance of European Directive 2002/96/EC on Waste Electrical and Electronic Equipment and its implementation in accordance with national law, electrical equipment that has reached the end of its life must be collected separately and returned to an environmentally compatible recycling facility. As the owner of the equipment, you should get information on approved collection systems from your local representative.

For more information look in the web after the keyword ,WEEE'.

16. Control elements

16.1 Material strength / welding current / wire speed

Material thickness:

Possible range from 0.6 to 20mm; in increments of 0.1mm

Welding current:

Possible range from 10 to 330/400/500A in increments of 1A

Repeatedly press the button to select the desired function. The respective LED illuminates. The value can be set with the left dial (pos. 2)

Α

NOTE: The adjustment ranges vary depending on the welding process and the material.

16.2 Left dial (left display)

With this dial, the selected active parameter **material thickness** / **welding current** or **wire speed** can be adjusted.

Furthermore, the functions in the text display (left half of the display) can be changed.

<u>16.3 Trigger mode 2-step / 4-step / 2-step crater-fill / 4-step crater-fill – current I2 / Spot</u> / stitch

Repeatedly press the button to select the desired function.

• 2-step		Press and hold the torch trigger to weld. $\int^{1} \\ \leftarrow 12$ Release the torch trigger and the welding process ends. $\int^{1} \\ \leftarrow 2$
• 4-step		Press and release the torch trigger to weld. Press and release the torch trigger and the welding process comes to an end.
• Spot welding	E •	Press and hold the torch trigger to weld. The welding current flows for a preset time. Afterwards, the welding process ends automatically. Release the torch trigger. To repeat, press and hold the torch trigger again. To adjust the welding spot time, press the Fx button and set the welding spot time.
• Stitch	€ <u>₹</u> LED flashes	Press and hold the torch trigger to weld. The welding current flows for a preset welding time. Afterwards, the welding process ends automatically. After a preset pause time, the welding process starts again for the duration of the preset welding time. This process is repeated until the torch trigger is released. To adjust the welding/pause time, press the Fx button and set the welding spot time.

\$ \$ •

Crater Function 2-cycle, 4-cycle, current I2, Doublepuls

Crater Standard: 2-cycle or 4-cycle

Variant V1: Only 4-cycle crater with current I2

Variant V2: Only MIG DOUBLEPULSED

16.4 Fx / parameter description of the welding processes MIG/MAG:

The parameters can be called up using the Fx button and changed with both dials.

					\	Nelc	ding	proc	ess		
Function: Selection with the left Rotating knob (Pos. 2)	Display text	Basic settings	Range- values Selection with the right rotating knob (Pos. 8)	2-Cycle	4-cycle	2C Crater	4C Crater	4C Crater + current I2	Spot welding	Interval welding	Double pulse
Gas pre flow time	PRE GAS	0.1s	0.0 – 2.0s	•	•	•	•	•	•	•	•
Start speed	START SPEED	0	-30 - +30	•	٠	٠	•	•	•	•	•
Start pulse	START PULS	0	-30 - +30	•	•	•	•	•	•	•	•
Start current	INIT CURRENT	20%	-50 - +100%			٠	•	•			
Arc length Start	INI. ARC L.	0	-30 - +30			٠	•	•			
Crater Start time	T. INIT CARTER	1.0s	0.0 – 2.0s			٠					
Start ramp	INI SLOPE C.	1.0s	0.0 – 2.0s			٠	•	•			
End ramp	FIN SLOPE C.	1.0s	0.0-8.0s			•	•	•			
End current	FINAL CURRENT	-30%	-100 - +50%			٠	•	•			
Arc length End	FIN ARC L.	0	-30 - +30			٠	•	•			
Crater End time	T: FIN CRATER	0.0s	0.0 – 2.0s			٠					
Burn back time	BURN BACK	0	-30 - +30	•	٠	٠	•	•	•	•	•
Gas post flow time	POST GAS	1.0s	0.0 - 10.0s	•	•	•	•	•	•	•	•
Current I2 Start ramp	IN SLOPE CYC	0.05s	0.0 – 1.0s					•			
Current I2	CYCLE CURR.	20%	-99 - +100%					•			
Arc length I2	CYCLE ARC L.	0	-30 - +30					•			
Current I2 End ramp	FI SLOPE CYC	0.05s	0.0 – 1.0s					•			
Double pulse Start ramp	IN SLOPE DP	5.5s	0.5 – 100s								•
Double pulse current	DPuls – CURR	50%	-99 - +200%								•
Double pulse arc length	DP Arc Len	0	-30 - +30								•
Double pulse balance	DPuls - BAL.	0	-40 - +40								•
Double pulse frequency	DPuls - FREQ.	2.7	0.1 – 5.0Hz								•
Double pulse End ramp	FI SLOPE DP	5.1s	0,1 – 100s								•
Current rise rate	Slope Job	100 A/s	5 – 500A/s	•	•	•	•	•	•	•	•
Spot time	SPOT TIME	3.0s	0.0 - 20.0s						•		
Welding ON time	STITCH TIME	1.0s	0.1 – 8.0s							•	
Pause (OFF) time	STITCH PAUSE	1.0s	0.1 – 8.0s							•	

• Standard crater program:

2 step: The torch trigger is **pressed** and after the gas pre-flow time has elapsed, the arc is ignited with the preset hot start current. After the hot-start time is finished, the current slopes down, over the preset start

ramp time, to the preset main welding current I1.
 The torch trigger is **released**, and the current slopes down to the preset end crater-fill current, over the end-crater ramp time. After the welding crater end time, the arc extinguishes.

After this, the shielding gas flows for the preset gas post flow time.

When the torch button is **pressed again**, the current slopes down over the end-crater ramp time, to the preset end crater-fill current. The end crater-fill current is active all the time the trigger is pressed. and stays at this level. The torch trigger **released**, and the arc is extenguished. After this, the shielding gas flows for the preset gas post flow time.

• 4-step crater-fill program with secondary current I2:

Functions like the 4-step standard welding crater-fill program.

Additionally, the welding power can be swapped between I1 and I2 by pressing the torch trigger for less than (< 0.5s) whilst welding.

• Double pulse welding process:

Here, in addition to a pulsed arc, a further pulsing between 2 pre-set power settings can be activated. The extra parameters are shown the welding crater-fill diagram.

16.4 Fx / parameter description of the welding processes TIG / Electrode:

The parameters can be called up using the Fx button and changed with both dials.

Function: Selection with the left Rotating knob (Pos. 2)	Display text	Basic settings	Range-values Selection with the right rotating knob (Pos. 8)	ELECTRODE	TIG LIFTARC	TIG PULSE LIFTARC
HOTSTART	HOT START	50	0 – 100%	•		
ARCFORCE	ARC FORCE	50	0 – 100%	•		
Slope up	UP SLOPE	0.0s	0.0 – 2.0s		•	٠
Slope down	DOWN SLOPE	2.0s	0.0 – 8.0s		•	٠
End voltage	SWS V. LIMIT	0	-30 - +30		•	•
Pulse overcurrent	PULSE DELTA	-50%	-100 – 1000%			٠
Pulse Balance	PULSE BAL.	0%	-40 – 40%			٠
Pulse Frequency	PULSE FREQ.	100Hz	0.1 – 500Hz			•
						•

16.5 Welding process / material selection

By repeatedly pressing the button, the desired function can be selected.

Welding process (MODE):

With the left dial (pos. 2), the desired process can be selected (\blacktriangleright) and called up with the button 'ENTER/OK' (pos. 12).

The follow welding processes can be selected:

- MIG PULSE
- MIG DOUBLE PULSE
- MIG/MAG SYNERGIC
- MIG/MAG MANUAL
- COLD CSt (option)
- PIPE (option)
- POWER ARC (option)
- FAST ARC (option)
- MMA (electrode)
- TIG LIFT
- TIG PULSED LIFT ARC
- JOB (only available after allocating jobs)

Material selection (MATERIAL):

With the left dial (pos. 2), the desired material / gas / wire diameter combination can be selected and confirmed with the button 'ENTER/ OK' (pos. 12).

All the materials stored in the machine are listed in the table.

The text display (pos. 9) shows the following information (example):

- 1. Line: Welding process / number
- 2. Line: Material
- 3. Line: Wire diameter
- 4. Line: Gas type / mixture

16.6 Special function button 1

With this button, special functions are possible. An exact description can be found near the respective functions.

16.7 Arc length / welding voltage / welding choke

• Arc length:	 Possible range from -30% to +30% of the set voltage level in 1% increments. A value smaller than 0 means a shorter arc. A value larger than 0 means a longer arc.
• Welding voltage: • V	Shows the voltage currently set. It can be changed (adjusts welding power) using the left dial.
	In the welding process 'MANUAL', the welding voltage can be set between 10V - $38V$ in 0.1V increments.
• Welding choke: •-💉	Possible range from -30% to +30% in 1% increments A value smaller than 0 means a 'softer' arc. A value larger than 0 means a 'harder' arc.

Repeatedly press the button to select the desired function. The respective LED illuminates.

The value can be set with the right dial (pos. 8).

16.8 Dial 2 (right display)

With this dial, the respective active parameters **arc length** / **welding voltage** or **welding choke** can be adjusted.

Furthermore, the functions in the text display (left half of the display) can be changed.

16.9 Graphic display

Display to show all welding functions and parameters.

16.10 Gas test / 11 wire inch

By pressing the key GAS TEST, the gas valve opens and the shielding gas flow for a maximum duration of 15 seconds. Alternatively, the key can be pressed again in order to end the procedure.

If the button WIRE INCH is pressed, the wire feeds without voltage or gas.

16.12 Enter/OK - JOBSTORE

With the button ENTER / OK, all entries or queries can be confirmed.

JOBSTORE / call up - manage job memory

Save JOB:

When the optimum welding parameters for your welding task are found, these can be saved under JOB.

Press and hold the button JOBSTORE (pos. 12) for 3 seconds.

The first available space for saving appears in the display, e.g. JOB 003.

You can now save in space no. 3, or select another available space by turning on the left dial (pos. 2). In order to save the data, press the button JOBSTORE again (pos. 12). The job is now stored.

Overwrite JOB:

If you would like to overwrite a JOB, first set the new parameters on the machine.

Press the button JOBSTORE (pos. 12) for 3 seconds.

The first available space for saving appears in the display. (e.g. JOB 004).

Now you can select the JOB to be overwritten with the left dial (pos. 2), e.g. JOB 002.

Now, press the JOBSTORE button briefly (pos. 12).

A confirmation prompt appears asking if you would like to overwrite this JOB.

If YES, press the special function button 1 under the word OK. The parameters are now saved in this JOB.

If **NO**, press the special function button 2 under the word DELETE. The procedure is cancelled. Leave the JOB MENU with the button MODE/MATERIAL (pos. 5).

Select JOB:

If the mode JOB is no longer active, press the button MODE/MATERIAL (pos. 5) until the welding process is displayed. Now, turn the left dial (pos. 2) until the arrow points to the word JOB. Select with the button ENTER / OK (pos. 12).

In the upper displays, JOB and 003 is shown (for example).

If you have already saved several JOBs, you can select the individual JOBs with the right dial (pos. 5). The JOB shown in the right display is always active.

The set parameters for this JOB are shown in the display.

Leave JOB:

In order to leave the JOB mode, you have 2 possibilities:

- 1. Press and hold the JOBSTORE button for 3 seconds.
- 2. Press the MODE button and select another welding process, e.g. MIG PULSE

16.13 Special function button 2

With this button, special functions are possible. An exact description can be found near the respective functions.

17. Special functions / SETUP

Call up special function:

Press and hold the special function button 1 (next to MODE/MATERIAL) for 5 seconds until the PARAMETER appears ('Setup' is shown in the upper displays).

With the left dial (pos. 2), the desired special function can be selected (\blacktriangleright) and confirmed with the button 'ENTER/ OK' (pos. 12).

The selection allows the following special functions:

17.1 Copy/Delete Jobs

Individual jobs can be deleted with this function.

In the menu under "Reset" (pt. 8), all the jobs can be deleted at the same time.

With the left dial (pos. 2), the desired job can be selected (►) and confirmed with the button 'ENTER/ OK' (e.g. pos. 002).

By pressing the special function button 2, under delete' the confirmation prompt YES or NO appears. By pressing YES, the job is deleted, NO cancels the process.

17.2 Password

With this function, only the use of the special functions / setup menu can be locked.

ATTENTION: If the password is forgotten, this menu cannot be opened anymore!!

This is useful if the functions block (next point) is activated.

The password can be set between 001 and 999 with the right dial (pos. 5).

By pressing the button ENTER / OK (pos. 12), the password is saved.

If the next time the special functions / Setup menu is called up, the password has to be entered and confirmed with the ENTER / OK button (pos. 12).

In order to deactivate the password block, repeat the process and enter 000 as a password. With that, the password lock is deactivated.

17.3 Functions Block

Here, individual functions can be locked for users.

With the left dial (pos. 2), the desired special function can be selected (\blacktriangleright) and the value can be changed with the right dial (pos. 5).

Block type:	None	 All functions are ur 	nlocked			
	Level 1 [1]	 All functions are lo 	e welding power and the arc length			
	Level 2 [2]	 All functions are locked Here, individual parameters locks can be configured. 				
	User [C]					
		Welding power Arc length	(I./W.SPEED) (Arc L./V)	in % in %		
(Shown in display, e.g. [1])		Process change	(Process C)	Disabled/Enabled		
		Program change	(Program C)	Disabled/Enabled		
		Job change	(Job Change)	Disabled/Enabled		

17.4 Advanced Selections / language

Here, various functions can be switched on and off.

With the left knob (pos. 2), the desired special function can be selected (\blacktriangleright) and the value can be changed with the right knob (pos. 5).

Language:	German – English – French – Italian – Spanish
ADV WELD:	Menu point 6, Show / hide 'weld extras'(enabled / disabled)
Cool Mode:	Always on or on demand (the cooling unit is detected automatically)
Gun load:	Inch wire by pressing the torch trigger (yes or no)
W.L.SPD:	Determine speed for wire feed in (standard 8.0 m/min)

17.5 Working indo / energy consumption

With the left dial (pos. 2), the desired special function can be selected (\blacktriangleright).

Under this point, the following operational times can be read:

•	<u> </u>	
Arc on Timer:		Welding time in 0 dd (days) 0:00:00 (HRS:Min:Sec)
Time welder on:		Machine time in 0 dd (days) 0:00:00 (HRS:Min:Sec)
Energy saving:		Normal - middle - high: Thereby, the power consumption can be reduced in
		stand-by mode. The display is switched off quicker.

17.6 Advanced Welding (if activated under point 5.4)

Here, extra welding parameters can be either activated or deactivated.

With the left dial (pos. 2), the desired special function can be selected (\blacktriangleright) and the value can be changed with the right dial (pos. 5).

12 Current:	Disabled –secondary power I2 is not active
	I2 Standard - secondary power I2 is active with limited parameters Fx I2 Advanced - secondary power I2 is active with all parameters Fx
Welding crater ex:	Cr. Standard - welding crater function is active with limited parameters Fx Cr. Advanced - welding crater function is active with all parameters Fx
DPuls on:	DP Standard - double pulse function is active with limited parameters Fx DP Advanced - double pulse function is active with all parameters Fx
<u>Arc L.:</u>	Voltage – arc length correction with voltage shown in volts Wire speed.– arc length correction with wire speed shown in m/min

17.7 Equipment Layout

Here, required settings for the accessories in manual or robotic welding can be configured.

Setup equipment (manual):

 Here, the welding torch currently used and the ground cable can be configured.

 With the left dial (pos. 2), the desired special function can be selected (►).

 Cooling unit:
 Optional – Cooling unit is detected automatically or compulsory – Cooling unit must be connected

 Wire feed:
 Optional – Wire feed unit is detected automatically or compulsory – Wire feed unit is detected automatically or compulsory – Wire feed unit must be connected

U/D torch:	Torch with display – not possible at the moment
	Missing or optional – Torch is detected automatically or
	compulsory – Torch must be connected
Torch:	Set torch type. The following types are possible:
	AIR – air-cooled torch, H2O – water-cooled torch
	150A, 200A, 250A, 300A, 350A, 400A, 450A, 500A
	PP8N / PP12N: Push-pull torch with a length of 8m and 12 m

SCC Cable: Ground cable + intermediate hose pack length from 1 to 100 m

Robot config. (robot welding):

Only necessary and configurable in combination with a robot control.

17.8 Reset

Here, there are 3 different reset functions.

With the left dial (pos. 2), the desired reset function can be selected (\blacktriangleright).

Delete all jobs? - Hereby, only the saved jobs are deleted (ALL JOBS!!).

By pressing the special function button 2, under OK, the confirmation prompt YES or NO appears. By pressing YES, all jobs are deleted, NO cancels the process.

Factory setting? - Hereby only the welding parameters are reset to the factory settings.

By pressing the special function button 2, under OK, the confirmation prompt YES or NO appears. By pressing YES, all data are reset, NO cancels the process.

Reset everything? - Hereby, both jobs and all parameters are reset.

By pressing the special function button 2, under OK, the confirmation prompt YES or NO appears. By pressing YES, everything is deleted, NO cancels the process.

17.9 STW - Software versions

Here the software versions that are currently installed on your machine are displayed.

- SW Source: Welding machine main PCB software
- Curves: Welding curve software
- FDR 1: Wire feeder 1 software
- FDR 2: Wire feeder 2 software
- Torch: Display software in the welding torch (if available)
- Robot: Robot interface software (if available)
- S/N...: Serial number of the entire machine (press ENTER / OK again)

17.10 Download / upload

In this menu, you can read and save existing data from the machine, or install new data and parameters in the machine.

With the left dial (pos. 2), the desired special function can be selected (\blacktriangleright) and the value can be changed with the right dial (pos. 5).

DW. USB:	Error:	Read and save error file
	Weld:	Read and save welding data
	Jobs:	Read and save jobs
	Config.:	Read and save machine settings
	All:	Read and save all 4 listed data sets
UP USB:	_Jobs: Config: All:	Save jobs in the machine Save machine settings in the machine Save all data in the machine
UPG. USB:	STW PM: STW FE: STW IR: STW PS:	Update torch PCB Update wire feed PCB software Update robot interface software Update main PCB software

17.11 Error codes

All recognized errors in the display are shown with a duration in 00:00.00 (HRS:min:Sec) The error codes are listed described in chapter 24.

In order to go back to a menu or leave the entire menu, repeatedly press the key MODE/MATERIAL.

18. Operation / welding

Before welding, please pay attention to the following points:

- Check the diameter of the contact tips and the wire diameter, both must correspond.
- Press the button wire feed in until the wire comes out of the torch tip.
- Connect the gas hose to the gas cylinder and open the cylinder slowly.
- Set the gas pressure on the pressure regulator to the appropriate value (approx. 1.3-1.7 bar)
- Press the gas testing button and set the gas flow to a value between 8.5 and 201/min
- **tip:** Wire diameter x 10 e.g.: 1.2 mm x 10 = 12 l/min
- The system is ready to weld.

18.1 MIG PULSE – MIG Double PULSE - MIG/MAG automatic

<u>NOTE:</u> All functions and parameters are exactly described under point 4 operating controls. The functional sequence is described.

In these welding processes, it has to do with automatic welding sequences.

In order to facilitate operation, it is normally necessary to configure the right welding program and welding power. All other parameters are regulated by the machine itself.

This allows operating personnel with little experience to achieve good welding results.

A variety of welding programs have already been saved in the machine.

(see program selection panel in the wire feed flap)

For the welding processes MIG PULSE / DOUBLEPULSE / AUTOMATIC; **all** modes are available (pos. 3). Thereby, the possible parameters can be set with functions Fx (pos. 4). A detailed explanation can be found under the point **Fehler! Verweisquelle konnte nicht gefunden werden.** control elements.

Using the MODE button, the required welding process can be selected, e.g. MIG PULSE. By pressing the MATERIAL button again, the material menu opens. With the left dial (pos. 2), the desired material can be selected in a display. By pressing the ENTER / OK button, the parameters are accepted.

Subsequently, set the required welding power via 1 of the 3 possibilities available:

- Welding voltage V (pos. 7)

- Welding current A (pos. 1)

- material thickness mm(pos. 1)

These values are configured with the left dial (pos. 2). The respective value is shown in the right or left display.

The machine is now ready for welding.

For optimising the welding arc, the arc length (pos. 7) and the welding choke (pos. 7) can be configured individually.

18.2 MIG/MAG Manual

NOTE: All functions and parameters are exactly described under point **Fehler! Verweisquelle konnte nicht gefunden werden.** control elements.

The functional sequence is described.

Set the machine to the welding process MIG MANUAL.

The user must select the wire speed to between 0.6 and 22m/min with the left dial (pos. 2) and set the welding voltage to between 10V and 40 V using the right dial (pos. 8) just like an ordinary MIG machine.

Attention: No automatic function in this welding process is active!

The set values are shown on the displays. During the welding process, the actual values are displayed. The parameters can be changed during the welding process.

For the welding process MIG MANUAL, all modes (pos. 3) are available.

Thereby, the possible parameters can be set with functions Fx (pos. 4).

A detailed explanation can be found under the point **Fehler! Verweisquelle konnte nicht gefunden werden.** control elements.

18.3 Special process Cold – Pipe – Power Arc – Fastarc (all options)

NOTE: All functions and parameters are exactly described under point **Fehler! Verweisquelle konnte nicht gefunden werden.** control elements.

The functional sequence is described.

The COLD arc is a modified short-circuit arc that has been developed especially for welding thin sheets, root beads and for MIG brazing in all positions.

The welding programs included within the scope of supply allow a very high level of welding quality to be achieved with an optimised arc and minimal change to metallurgical properties.

BENEFITS

- gap bridging (also vertical down)
- low heat input
- low distortion
- reduced risk of burn through fall-through of the smelt
- welding of materials with high levels of carbon as well as high-alloyed steels
- no damage to the zinc coating when MIG brazing
- saving material and energy costs
- good controllability in overhead

APPLICATIONS

- welding of thin sheet with low heat input
- welding of stainless steel and thin aluminium sheets
- MIG brazing with a low level of heat input
- Optimal root welds

Power range:20A – 200ACurves:Steel 0.8/1.0/1.2mm , stainless steel (Cr-Ni) 0.8/1.0mm , Cu-Si3 0.8mm

<u>PIPE</u>

The PIPE arc is a modified short-circuit arc that has been developed especially for root welds in all positions. The welding programs included within the scope of supply allow an extremely high level of quality, power and gap bridging characteristics, even if the various root gaps have to be worked on. The process allows a TIG or electrode welded root quality with a shorter welding time.

ADVANTAGES

- perfect and safe root welding in a vertical up or down position
- higher welding speed with respect to TIG or electrode welded root
- precise arc control when welding pipes and sheets with the desired thickness and in all positions.
- clear reduction of heat input into the welding seam joints
- simple welding process, simple to learn and to operate
- constant level of quality

APPLICATIONS

- pipe root welding
- sheet root welding

Power range: 30A – 170A Curves: Steel 1.0/1.2mm , Flux cored (metal powder) 1.2mm

POWER ARC

The POWER ARC is a modified innovative arc that has been especially developed for deep fusion penetration and long stickout.

The welding programs included within the scope of supply allow a concentrated arc full of pressure that could be used everywhere, where a deeper fusion penetration, longer stickout (gap) or a narrow/smaller seam joint preparation is required.

Advantages

- safer and deeper penetration with a higher rate of deposition
- higher welding speed in relation to normal spray arc
- Reduced angle weld preparations possible
- saving of wage, material, gas and energy costs
- optimal side wall fusion and therefore, less undercut
- easy manipulation
- virtually spatter free

Applications

- medium to heavy workpiece thicknesses
- steel, stainless steel and Aluminium processing operation
- automated and manual usability

Power range: 70A – 330/400/500A Curves: Steel 1.2mm , stainless steel (Cr-Ni) 1.2mm

FAST ARC

The FAST ARC is a modified innovative arc that has been especially developed for high welding speeds for steel and non-ferrous metals.

By means of magnetic influences, a very narrow arc reduces the heat input into the material and therefore reduces material distortion and rework.

The welding programs included within the scope of supply allow a high level of welding power in short and mixed arcs.

Advantages

- high welding speed
- suitable for steel and non-ferrous metals
- virtually no welding spatter
- lower level of heat input due to a higher welding speed
- safer and deeper penetration with a higher rate of deposition
- higher welding speed in relation to normal spray arc
- saving of wage, material, gas and energy costs
- optimal side wall fusion and therefore, less undercut
- easy manipulation

Applications

- medium to heavy workpiece thicknesses
- steel, stainless steel and Aluminium processing operation
- automated and manual usability

Power range: 70A – 330/400/500A Curves: Steel 1.2mm, stainless steel (Cr-Ni) 1.2mm

These welding processes are all synergic welding programs. In order to facilitate operation, it is normally necessary to configure the right welding program and welding power. All other parameters are regulated by the machine itself. This allows operating personnel with little experience to achieve good welding results.

A variety of welding programs have already been saved in the machine.

(see program selection panel in the wire feed flap)

For the welding processes COLD / PIPE / POWER / FASTARC, **all** modes are available (pos. 3). Thereby, the possible parameters can be set with functions Fx (pos. 4). A detailed explanation can be found under the point 4 operating controls.

Using the MODE button, the desired welding process can be selected, e.g. MIG COLD. By pressing the MATERIAL button again, the material menu opens. With the left dial (pos. 2), the desired material can be selected in a display. By pressing the ENTER / OK button, the parameters are accepted.

Subsequently, set the required welding power via 1 of the 3 possibilities available:

- Welding voltage V (pos. 7) not for COLD and PIPE
- Welding current A (pos. 1)
- Material diameter mm (pos. 1)

These values are configured with the left dial (pos. 2). The respective value is shown in the right or left display.

The machine is now ready for welding.

For optimising the welding arc, the arc length (pos. 7) and the welding choke (pos. 7) can be configured individually.

18.4 Electrode (MMA) welding / VRD

NOTE: All functions and parameters are exactly described under point **Fehler! Verweisquelle konnte nicht gefunden werden.** control elements.

The functional sequence is described.

ATTENTION: In the welding process ELECTRODE, the no-load voltage is applied to both output sockets. Careful, risk of short circuits and electric shock!

Set the machine to the welding process ELECTRODE.

The desired welding current can be configured.

Furthermore, the following parameters can be changed individually.

⇒ Arc force

The arc-force function prevents the electrode sticking to the workpiece during welding, thus overheating the electrode and making it unusable.

That means that the power source increases the welding current for a short period of time to prevent adhesion and ensures a trouble-free welding process, even in the case of electrodes that are difficult to weld (configure using the Fx button).

⇒ HOT start

Is an increase of the welding current during arc ignition. This increase should prevent lack of fusion at the start of the welding seam and cold tacks. (configure using Fx button)

⇒ Electrode material type

3 different types of electrodes can be welded. Basic electrodes (basic), rutile electrodes (rutile) and stainless steel electrodes (Cr-Ni) (configure using the Material button)

⇒ VRD display (Voltage Reduction Device)

VRD means voltage reduction at the output. This function applies a maximum level of voltage of <13V at the terminals. However, this means reduced performance ignition characteristics of the electrodes. VRD OFF: Uo= 63V, VRD ON: Uo=13V

This function is deactivated by default.

In order to switch on VRD, the front plate has to be unscrewed when the unit is switched off and the VRD jumper on the PCB just behind it has to be removed as shown in the figure. Activation takes place by setting the jumper.

Using the following rule of thumb, an average for the level of welding current can be determined:

Welding current = 50 x (electrode diameter- 1)

Example: 3.2 mm electrode

18.5 TIG welding with LIFT-ARC function / pulsed

NOTE: All functions and parameters are exactly described under point **Fehler! Verweisquelle konnte nicht gefunden werden.** control elements.

The functional sequence is described.

ATTENTION: In the welding process TIG, the no-load voltage is applied to both output sockets. Careful, risk of short circuits!

In this case of the lift-arc principle, the tungsten electrode is placed on the workpiece. This causes a short circuit. A limited ignition current flows, ionises the gap and ignites the arc upon lifting.

Preparation: Connect TIG torch with gas valve at the –VE socket and feed in the argon gas over a separate gas hose.

JÄCKLE ProPuls reduces tungsten inclusions during the contact ignition by means of a gentle rise in the welding current. Thereby, less heat is introduced. The precise and quick control technology prevents inclusion and additionally reduces undercut.

With an optional feature at the end of the welding process (raising the torch) the welding current is automatically reduced. This reduces end craters by reducing the current gently.

Set the machine to the welding process TIG Lift Arc or TIG pulse Liftarc.

The desired welding current can be set.

Furthermore, the following parameters can be changed individually.

- ⇒ Slope up: Rise time from ignition to the main welding current
- ⇒ **Slope down:** Time for power to reduce before stopping
- Stop voltage: Here, an individual voltage can be set to initiate shutdown
- ⇒ Pulse delta: Level of pulse current in % in relation to main current
- ⇒ Pulse balance: The balance of the pulse current (positive in relation to negative half-wave)
- ⇒ **Pulse frequency:** The frequency of the pulse current

Reference values for tungsten electrodes and the current carrying capacity / however always consult with manufacturer specifications of the tungsten electrodes.

Tungsten electrodes		Colour	Current carrying capacity of the tungsten electrode at the – pole and alternating current					
short marking	short Main use marking		1.0	1.6	2.4	3.2	4.0	4.8
WP (WP- 00)* Pure tungsten	AC/DC Aluminium	green	<65 <25	45-90 30-90	80-160 80-140	150-190 130-190	180-260 180-270	240-450 250-350
WL - 10 Thoriated 1.0%	DC high-alloyed and rust-free steels	yellow	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WL - 20 Thoriated 2.0%	DC high-alloyed and rust-free steels	red	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WL - 30 Thoriated 3.0%	DC high-alloyed and rust-free steels	purple	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WZ - 40 Thoriated 4.0%	DC high-alloyed and rust-free steels	orange	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WZ - 08 Zirconium 0.8%	With zirconium, low risk of contamination	white	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WC - 20 * Ceriated 2.0%	DC and AC/DC universal	grey	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WL - 10 Lanthanated 1.0%	DC and AC/DC Universal for the low current range	black	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WL - 15 Lanthanated 1.5%	DC and AC/DC Universal for the low current range	gold	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
WL - 20 Lanthanated 2.0%	DC and AC/DC universal for the Low level current range	blue	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450
Lymox * Mixed oxide	DC and AC/DC universal	pink	<75 <30	60-160 30-120	150-250 100-210	220-330 150-260	310-490 240-350	460-640 310-450

* the most common electrodes for manual welding operations

18.6 Welding sequences / changing between jobs

A welding sequences is a sequence of successively saved welding - JOBS. The welding jobs must be consistently saved in the right order (exactly like individual points) and then separated from other welding points with a space before and after the sequence.

If the sequence is fixed in this way, complex workpieces can be welded without interruption The sequence can be called up again and is reproducible at any time.

If the machine is equipped with an UP/DOWN torch, within a sequence, changes can be made between welding points that are adjacent to one another during the welding process.

Without an UP/DOWN torch, this is not possible.

How quickly the individual points of the welding process can be changed can be regulated by using the Fx function button and the setting jobslope (current increase between sequences).

For this, press the Fx button and change the slope with the dial.

During start-up, it is not mandatory to start with the first point in the sequence because the machine has the last active point in its memory. In this connection, select the appropriate welding point with the program selection button and start.

When you have come to the beginning or end of the sequence, the program always goes the corresponding opposite end.

e.g.:Beginning Job 5 \Rightarrow Job 6 \Rightarrow Job 7 \Rightarrow JOB 8 End \Rightarrow Beginning Job 5 \Rightarrow Job 6 \Rightarrow Job 7 \Rightarrow JOB 8 End

18.7 Welding aluminium

For welding aluminium, small adjustments have to be made to the welder so as to ensure trouble free welding operation:

⇒⊡Wire feed:	use special aluminium wire feed rolls
⇒ Contact pressure:	of the rolls is reduced, deformation of the wire is undesirable
⇒⊡Torch:	select as short as possible and equip with a Teflon core

⇒Use argon welding gas

19. Start-up

19.1 Transport

During unpacking, ensure that the delivery is complete and check for possible transport damage. Any shortcoming, whether it be due to an incomplete delivery or transport damage should be reported to the haulage company, the insurance company and the company JÄCKLE or one of their dealers immediately in writing.

19.2 Setting up the welder

When setting up the welder, pay attention to ensuring that enough clearance is available for the cooling air to move in and out freely so that the specified duty cycle can be achieved (at least 1.5m). As far as possible, the welder should not be exposed to moisture, welding spatter or direct fountains of sparks during grinding work.

Attention:

Metallic deposits inside the unit can lead to short circuits and therefore to irreparable damage of the welder. (metal dust in the air)

The welder should not be used outdoors in the case of rain.

⇒Connect mains plug (if required)

The mains plug must only be connected by **a qualified electrical technician** according to the specifications on the rating plate.

\Rightarrow \Box Connecting the shielding gas cylinder

Place the shielding gas cylinder on the back of the transport vehicle and secure it with chains. Connect the cylinder pressure reducer and check the connections for leaks.

⇔Connect the welding torch-hose assembly

Connect the torch hose assembly to the central connector. In the case of water-cooled welding torches, both cooling water hoses should be connected to the appropriate connection couplings according to their colour coding (blue = flow, red = return flow).

⇔Connect TIG torch with gas valve

For TIG welding, the torch is generally connected to the –POLE (in order to reduce the load on the nonconsuamlbe Tungsten electrode). In this case, the gas hose is directly connected to the gas cylinder with the pressure regulator.

⇔Connect the electrode holder

The E-holder is generally connected to the +POLE. However, this can also be connected to the -POLE depending on the welding electrode. Here, all of the manufacturers specifications on the packaging of the filler metal should be adhered to.

In the case of all connection within the welding circuit such as the workpiece connection torch connection and the contact tip, good contact must be ensured. Bad contacts cause a high level of resistance that may lead to the collection of heat and therefore poor welding characteristics.

⇒Connect workpiece cable

Principle: Workpiece terminals should be securley connected, to allow good conductivity. Meaning that they should not be connected to paint, rust, etc. Fasten the welding return plug securly on the unit by turning it clockwise.

Use a ground cable with at least 50mm^2 – cable. If an extension is required, use a larger cross-section.

Connection the ground cable to the unit according to the welding process:

Welding process	PLUS-pole	MINUS-pole
MIG/MAG-PULSE		
MIG/MAG-Double-PULSE		
MIG/MAG-SYNERGIC		
Cold / Pipe / Power / Fast		
Electrode MMA welding		
TIG-LIFT-ARC / pulsed		

During electric manual welding All of the specifications on the packaging of the filler metal should be adhered to!!!

20. Wire feed

Replacement of the wire feed roll (4)

For the wire used, the wire feed roll with the appropriate groove has to be used respectively.

To replace the wire feed rolls, the knurled screw (5) has to be unscrewed.

It must be ensured that the groove of the wire feed role forms an alignment with the wire guide pipes (6).

Figure 20.1 Wire feed

The wire feed rollers have two diameters on a single roller. That means that when installing the rollers, it must be ensured that the right groove is used. This is the case if the used wire diameter can be read on the roller.

The **pressure point of the wire feed role** must be configured with the spring pressure unit (7) in such a way that the wire is fed evenly if the hose assembly is stretched out, on the one hand, and does not kink on the other. It should slide out if the wire is stuck at the contact tip outlet.

Reel brake

The wire mandrel (2) is equipped with a reel brake that prevents the wire reel (3) from overshooting if the wire feed motor comes to a halt. By turning it to the right, the hexagon socket screw (1) can increase the braking power.

Feed of the wire in the torch hose assembly

The frictional resistance of the welding wire is increased in the wire liner in relation to the length of the hose assembly. The torch hose assembly should therefore be no longer than required.

When processing **aluminium welding wire**, it is recommended to replace the wire liner with a teflon wire guide. The length of the torch hose assembly should not be longer than 3 m.

It is recommended to blow out the wire liner and the wire guide line pipe after welding of a roll of wire using compressed air. The slippage of the wire liner will worsen depending on the amount of wire required and the wire properties. If an obvious wire feed fault is noticed, the wire liner shuold be replaced.

21. Maintenance, coolant JPP and safety check

Disconnect mains prior to any service and maintenance work!

The welding unit is, on principle, maintenance-free. However, make it a rule to carry out the following work:

Clean current contact tip and gas nozzle regularly, removing welding spatter and other impurities. Add Anti-Stick agent on nozzles after cleaning to reduce undesirable spatter adhesion.

Check current contact tip regularly for wear or damage, replace in time.

Clean the welding unit by air-blasting from inside according to pollution level. In order to guarantee a permanent good cooling effect pay attention to the cooling ribs of the water cooler: they should not be covered by dust.

- ONLY use JÄCKLE coolant JPP (Order No. 900.020.400)
- Unsuitable coolants can cause property damage and loss of warranty.
- Do not mix with water or other coolant.
- Do not weld without cooling water! Tank must always be full.
- Pump must not run dry, not even for a short time. Deaerating the pump.
- Hazardous to health keep away from children!
- MATERIAL SAFETY DATA on <u>www.jaeckle-sst.de</u> available.
- Frost-resistance up to -30°C

Attention:

This Welding unit has to be safety checked every year by JÄCKLE Company or another special qualified electrician according to the harmonized standard

IEC 60974 – 4

Safety, maintenance and inspection of arc welding equipment in use

22. Option Potentiometer remote control and Push-pull torch

Option Potentiometer remote control:

It is possible to connect two potentiometers as remote control with this equipment.

With the potentiometer 1 the welding power, and with the potentiometer 2 the arc length can be regulated. If the potentiometer is connected, the regulation in the control box and the up / down function in the torch is automatically deactivated.

The cables are not connected to the 7-pin socket in the wire feeder.

If necessary, the cables must be connected to a further socket.

The wiring is described in chapter 26 – Circuit diagrams, page 72.

Ground \rightarrow gray wire, +10 VDC \rightarrow light blue wire, potentiometer 1 \rightarrow green wire, potentiometer 2 \rightarrow blue wire

ATTENTION: As shown in the circuit diagram, there must be mandatory installed a protection diode in the ground wire!

Option Push-Pull Torch:

ATTENTION: it may only be connected a push-pull system for 24V DC! 42V or 48V systems are not permitted and lead to damage!

The cables are not connected to the 7-pin socket in the wire feeder. If necessary, the cables must be connected to a further socket.

The wiring is described in chapter 26 – Circuit diagrams, page 72.

+24V DC (Push-Pull) \rightarrow white wire, Ground \rightarrow black wire

23. Trouble-shooting

Any remedial action to defective electrical equipment must be carried out by a qualified electrician!

Malfunction/ Error	Cause	Remedy
mains voltage connected and master switch in pos. ON / mains Control is not lit	loss of supply voltage	Check mains fuse, Check mains cable
Wire buckling between wire feed rollers and guide tube	excessive contact pressure of wire feed rollers	see chapter 20 Wire feed
	distance between wire feed rollers and guide tube too far	check distance / realign guide tube
Irregular wire feed	bad uncoiling of wire	check / refit wire coil
	wire-holding arbour runs heavily	check wire-holding arbour
	wrong wire feed roller	see chapter 20 Wire feed
	dirty / defective wire guide tube or spiral	see chapter 20 Wire feed
	clogged / defective current contact tip	clean / exchange current contact tip
	dirty / rusty welding wire wire guide tube misaligned with wire feed roller groove	exchange welding wire see chapter 20 Wire feed
Porous weld seam	work piece surface polluted (paint, rust, oil, grease)	clean surface
	no shielding gas (solenoid valve not opening)	check / exchange solenoid valve
	insufficient shielding gas	check shielding gas at pressure reducer
		check gas line for leakage using meter tube
	gas nozzle polluted	clean gas nozzle

24. Automatic error diagnostics

In the case of error, error codes are shown in displays.

There are 2 types of errors:

Error messages are deleted automatically (short-term errors)
An error must be deleted by switching the welder on and off again (major fault / defect)

Error number	Error description and possible diagnosis
E0.0	VOLTAGE SUPPLY ERROR
	This error can only occur when switching on the unit, not during normal operation of the
	welding unit.
	This error is shown only on the display, but not saved in the error memory.
	Deleting an error by switching the unit on and off again.
E0.1	REDUCED VOLTAGE AND OVERVOLTAGE
	Error message deletes automatically
E0.2	OVERVOLTĂGE
	Error message deletes automatically
E0.3	REDUCED VOLTAGE
	Error message deletes automatically
E0.4	OVERLOAD CURRENT
	Error message deletes automatically
E0.5	REMOTE CONTROL
	Lack of remote control power supply
	Delete this error by switching the unit off and on again.
E0.6	WATER COOLING UNIT
	The machine wait for a signal from the cooling unit.
	- Check the hoses
	- Contact JÄCKLE customer service
	Delete this error by switching the unit off and on again.
E0.7	WF MOTOR ERROR
	Motor in the wire feed housing not functioning.
	- Check motor
	- Contact JÄCKLE customer service
	Delete this error by switching the unit off and on again.
E0.8	WIRE FEEDER MISSING
	The machine waits for a signal from the wire feeder.
	- Check intermediate hose assembly
	- Contact JACKLE customer service
	Delete this error by switching the unit off and on again.
E0.9	CAN ERROR
	The CAN communication between the machine and the wire feeder has been
	interrupted.
	- Check intermediate hose assembly
	- Contact JACKLE customer service
	Delete this error by switching the unit off and on again.
T°C	Excessive temperatures
	I ne machine has switched off due to overneating.
	Let the machine rest with the fan running until the message disappears.
110	
H20	COOLING UNIT PRESSURE
	I he cooling unit is recognised by the weider but the pressure switch is not functioning.
	- Check the water level and fill if required.
	Check to see if the pressure ewitch is functioning
	- Check to see if the pressure switch is functioning
E1.0	CONFIGURATION FILE IS MISSING (configuration file is missing)
E1.0	Internal error in the software
	Contact IÅCKLE customer service
	This arror is shown only on the display, but not sayed in the arror memory
	Delete this error by switching the unit off and on again
	Delete this error by switching the unit on and on again.

Error number	Error description and possible diagnosis
F1 1	USER SETTINGS MISSING
_	Internal software error
	- Contact JÄCKLE customer service
	This error is shown only on the display, but not saved in the error memory.
	Delete this error by switching the unit off and on again.
E1.2	TORCH SETTINGS MISSING
	Internal software error
	- Contact JACKLE customer service
	This error is shown only on the display, but not saved in the error memory.
F4 0	Delete this error by switching the unit off and on again.
E1.3	Internal software error
	- Contact IÄCKI E customer service
	This error is shown only on the display, but not saved in the error memory
	Delete this error by switching the unit off and on again.
E1.4	Not used
E1.5	Not used
E1.6	ELECTRODE SETTINGS MISSING
	Internal software error
	- Contact JÄCKLE customer service
	This error is shown only on the display, but not saved in the error memory.
	Delete this error by switching the unit off and on again.
E1./	I IIG SETTINGS MISSING
	Internal software error
	This error is shown only on the display, but not saved in the error memory
	Delete this error by switching the unit off and on again
F1.8	MIG/MAG SETTINGS MISSING
2.1.0	Internal software error
	- Contact JÄCKLE customer service
	This error is shown only on the display, but not saved in the error memory.
	Delete this error by switching the unit off and on again.
E1.9	WELDER SETTINGS MISSING (welding settings missing)
	Internal software error
	- Contact JACKLE customer service
	I his error is shown only on the display, but not saved in the error memory.
E2.0	
L2.0	Internal software error
	- Contact JÄCKI E customer service
	This error is shown only on the display, but not saved in the error memory.
	Delete this error by switching the unit off and on again.
E3.1	COOLING UNIT PRESSURE
	The cooling unit is recognised by the welder but the pressure switch is not functioning.
	- Check the water level and fill if required.
	- Check the lines
	- Check to see if the pressure switch is functioning
E2 2	
LJ.2	The error occurs after a short circuit between the output terminals of the machine for
	more than 1.2 seconds.
	In order to remedy the error, the short circuit must be eliminated so that the voltage at
	the torch exceeds the limit value. Now, the error is no longer displayed and the welding
	unit goes back to the mode it was in before the error occurred. If the torch button is still
	pressed, it must be released and then pressed again to continue the welding process.
	Delete this error by switching the unit off and on again.
E3.3	MOTOR SPEED ERROR
	I he motor turns but the signal for the speed is missing.
	Check the cable at the incremental encoder.
	- Contact JACKLE customer service
L	

Error number	Error description and possible diagnosis
E4.0	LAST SETUP IMPERMISSIBLE
	Internal software error
	- Contact JACKLE customer service
	This error is shown only on the display, but not saved in the error memory.
E 4 4	Delete this error by switching the unit off and on again.
E4.1	JOBS FALSE
	Contact IÄCKI E customer convice
	This error is shown only on the display, but not saved in the error memory
	Delete this error by switching the unit off and on again
E4.2	MAG SYN SPECIAL FUNCTION INCORRECT
	Internal software error
	- Contact JÄCKLE customer service
	This error is shown only on the display, but not saved in the error memory.
	Delete this error by switching the unit off and on again.
E4.3	MAG MAN SPECIAL FUNCTION INCORRECT
	Internal software error
	- Contact JACKLE customer service
	This error is shown only on the display, but not saved in the error memory.
	Delete this error by switching the unit off and on again.
E4.4	SPECIAL FUNCTIONS (Fx) MIG-PULSE INVALID
	Internal software error
	- Contact JACKLE customer service
	I his error is shown only on the display, but not saved in the error memory.
E45	
L4.J	Internal software error
	- Contact JÄCKLE customer service
	This error is shown only on the display, but not saved in the error memory.
	Delete this error by switching the unit off and on again.
E5.0	MAG PROGRAMS MISSING
	Internal software error
	- Contact JACKLE customer service
	This error is shown only on the display, but not saved in the error memory.
	Delete this error by switching the unit off and on again.
E5.1	WELDING PROGRAMS MIG PULSE NOT AVAILABLE
	- Contact IÄCKI E customer service
	This error is shown only on the display, but not saved in the error memory
	Delete this error by switching the unit off and on again.
E5.2	Not used
E5.3	ELECTRODE PROGRAMS MISSING
	Internal software error
	- Contact JÄCKLE customer service
	This error is shown only on the display, but not saved in the error memory.
	Delete this error by switching the unit off and on again.
E5.4	TIG PROGRAMS MISSING
	Internal software error
	- Contact JACKLE customer service
	Delete this error by switching the unit off and on again
F5.5	MAG MAN PROGRAMS MISSING (MAG manual programs missing)
20.0	Internal software error
	- Contact JÄCKLE customer service
	This error is shown only on the display, but not saved in the error memory.
	Delete this error by switching the unit off and on again.

Error number	Error description and possible diagnosis				
E6.0	WF HOUSING CAN communication faulty (Wire feeder communication faulty)				
	- Contact JÄCKLE customer service				
	Delete this error by switching the unit off and on again.				
E6.1	ROBOT INTERFACE communication faulty				
	This error is shown only on the display, but not saved in the error memory.				
	Delete this error by switching the unit off and on again.				
E6.2	TORCH DISPLAY communication faulty				
	This error is shown only on the display, but not saved in the error memory.				
	Delete this error by switching the unit off and on again.				
E7.0	REMOTE error				
	An error is detected with the remote control.				
	- wrong remote control connected				
	- cable connection faulty				
	- Contact JACKLE customer service				
	If a functioning remote control is connected, the error is rectified on its own.				
	Delete this error by switching the unit off and on again.				
AUT ADJ	This alarm occurs if the power limit value is exceeded. The alarm is shown every 1.5				
Power Limit	seconds alternating along with the standard display. Nevertheless, the machine				
	continues to weld with a limited level of power whilst adhering to the values indicated on				
	the rating plate.				
1					

25. Ersatzteile / spare parts

Frontansicht / front view

Nr.	PP 330	PP 400	PP 500	Bezeichnung	Designation	Nummer / Number
1	х	х	х	Drehdorn ProPuls	Wire feeder holder ProPuls	715.032.163
2	х	х	х	Handgriff groß	Hand grip big	705.032.051
3	х			Frontfolie ProPuls 330	Front label ProPuls 330	304.032.035
		х		Frontfolie ProPuls 400	Front label ProPuls 400	034.032.040
			х	Frontfolie ProPuls 500	Front label ProPuls 500	034.032.050
4	х	х	х	Seitenblech links	Left side cover	715.032.165
5	х	х	х	Frontteil ProPuls 2014	Front cover ProPuls 2014	715.032.152
6	х	х	х	Massebuchse BEB 35	Built-in tip jack BEB 35-50	422.031.024
7	х	х	х	Boden ProPuls	Bottom ProPuls	715.032.179
8	х	х	х	Haube ProPuls	Case top ProPuls	715.032.160
9	х	х	х	Brennerhalter rechts	Torch holder right	715.044.233
10	х	х	х	Seitenblech rechts	Right side cover	715.032.166

Seitenansichten / side view

Nr.	PP 330	PP 400	PP 500	Bezeichnung	Designation	Nummer / Number
30	х	x	х	Ausgangsschutzkondensator	Output protection capacitor	521.005.124
31	х			Primär/Sekundärblock komplett mit Kühlkörper PP 330	Primary/Secondary block complete with heat sink PP 330	521.005.019
		х		Primärblock komplett mit Kühlkörper PP 400	Primary block complete with heat sink PP 400	521.005.119
			x	Primärblock komplett mit Kühlkörper PP 500	Primary block complete with heat sink PP 500	521.005.219
32	x	x	x	Stecker 14-polig (ZSP)	Plug for 14-pole socket (wire feeder)	410.014.001
33	х	х	х	Massebuchse BEB 35	Built-in tip jack BEB 35-50	422.031.024
34	х	х	х	Steckerblech	Plug sheet	101.032.157
35	х	х	х	CPU Platine ProPuls 2014	CPU PCB ProPuls 2014	521.005.112
36	х	х	х	Netzteil ProPuls 2014	Power supply ProPuls 2014	521.005.111
37	х	х	х	Strebe rechts ProPuls 2010	Brace right ProPuls 2010	703.032.154
38	х	х	x	Kabelverschraubung M25x1,5	Screwed cable gland M25x1,5	420.025.001
	х	х	х	Mutter für Kabelverschraubung	Nut for Screwed cable gland	420.025.002
	х			Netzkabel 4x 2,5mm ² , 5m mit Stecker 16A	Main cable 4x 2,5mm ² , 5m with plug 16A	704.025.013
		х		Netzkabel 4x 4mm ² , 5m mit Stecker 32A	Main cable 4x 4mm ² , 5m with plug 32A	704.040.014
			x	Netzkabel 4x 6mm ² , 5m mit Stecker 32A	Main cable 4x 6mm ² , 5m with plug 32A	704.060.029
39		x		Sekundärblock komplett mit Kühlkörper ProPuls 400	Secondary block complete with heat sink ProPuls 400	521.005.118
			x	Sekundärblock komplett mit Kühlkörper ProPuls 500	Secondary block complete with heat sink ProPuls 500	521.005.218
40	х	x	х	Lüfter 24V DC	Fan 24V DC	521.005.125
41	х	х	х	Rückenteil ProPuls 2014	Back cover ProPuls 2014	715.032.182
42	х	х	х	Strebe links ProPuls 2010	Brace left ProPuls 2010	703.032.155
43	х			Haupt – Transformator P330	Main transformer PP330	521.005.017
		х		Haupt – Transformator P400	Main transformer PP400	521.005.117
			х	Haupt – Transformator P500	Main transformer PP500	521.005.217
44	х			Drossel ProPuls 330	Choke ProPuls 330	521.005.020
		х	х	Drossel ProPuls 400/500	Choke ProPuls 400/500	521.005.120
45	х	х	х	Boden ProPuls	Bottom ProPuls	715.032.179
46				Hauptschalter Sontheimer	Main switch Sontheimer	440.233.010
47		х	х	Kondensatorbank	Capacitorblock	521.005.113
48	х	x	х	EMV Filter ProPuls 2014	EMC filter ProPuls 2014	521.005.114

DV Koffer / Wire feed case DVK 3 - PP4

Nr.	Bezeichnung	Designation	Nummer / Number
50	Griff Kunststoffteil	Cover plastic handle	305.235.002
51	Haube PP4	Case top PP4	715.042.256
52	Schutzglasscheibe kleine Griffe	Protecting glass small grip	705.042.260
53	Drehknopf 28mm mit Strich	Knob 28mm with line	305.031.008
	Deckel 28mm mit Strich	Cover for knob with line	305.031.024
54	Steuerbox ProPuls 2014	Control Box ProPuls 2014	851.032.100
55	Seitenblech links PP4	Left side cover PP4	715.042.257
56	Fernbedienungsbuchse 7-polig	Remote control socket 7-pole	410.007.111
	Fernbedienungsstecker 7-polig	Remote control plug 7-pole	410.007.092
57	Schnellkupplung DN 5	Rapid action coupling DN 5	355.014.007
58	Gummifuß 35x32	Rubber feet 35x32	310.350.001
59	Griffrohr	Handle metal tube	715.042.220
60	Scharnier	Hinge	303.032.005
61	Kunststoffgriff Klein	Hand grip small	305.044.002
62	Drehknopf 21mm mit Strich	Knob 21mm with line	305.023.007
	Deckel 21mm mit Strich	Cover for knob with line	305.023.016
63	Kunststoffriegel (Verschluss)	Lock	303.625.007
64	Kofferklappe rechts PP4	Movable cover right PP4	715.042.254
65	Isolierflansch ZA Buchse	Insulating flansh	455.042.011
66	Haube Steuerbox PP 2014	Case control box PP 2014	101.011.066
	Abdeckung Steuerbox PP 2014	Panel control box PP 2014	101.011.067
67	DV Motor mit Tacho	Wire feed motor with encoder	521.001.050
68	4-Rollenantrieb DVK 3 - PP4	4-Roller drive DVK 3 - PP4	455.042.110
69	Schutzkondensator	Protection capacitor	521.001.306
70	Drahtaufnahmedorn	Spool holder	306.050.001
71	Kofferhalter	Flange	715.042.014
72	Widerstand	Resistor	521.005.307
73	Anschlussblech PP4	Connecting plate PP4	715.042.040
74	Stecker 14-polig (Koffer) – passende Buchse	Plug for 14-pole socket (wire feeder)	410.014.003
75	Stecknippel DN5	Coupling nipple DN5	355.014.006
76	Schnellkupplung DN 5	Rapid action coupling DN 5	355.014.007
77	Stromstecker	Current plug	DIX SE 50/70
78	Magnetventil 24V DC	Solenoid valve 24V DC	521.005.305

Ersatzteile / spare parts 4-Rollenantrieb 4-roller drive 42V

Pos	Bezeichnung	Designation	Nummer
1	Druckarm rechts komplett	Pressure Arm right complete	455.042.203
2	Druckarm links komplett	Pressure Arm left complete	455.042.204
3	Druckeinheit komplett	Pressure Device complete	455.042.205
4	Vorschubritzel komplett 18 Zähne	Geared Adapter complete 18 teeth	455.042.206
5	Befestigungsschraube	Fixing Screw	455.042.005
6	Mittlere Drahtführung 0.8 – 1.6 mm	Intermediate Guide Tube 0.8-1.6 mm	455.042.006
7	Drahteinlaufnippel Draht 0.8 – 1.6 mm	Inlet Guide Tube Wire 0.8-1.6 mm	455.042.008
8	Antriebsritzel 15 Zähne	Main Gear 15 teeth	455.042.036
9	Drahtvorschubrolle 0.8 / 1.0 für Stahl	Wire feed roll 0,8/1,0 hard wire	455.037.001
9	Drahtvorschubrolle1.0 / 1.2 für Stahl	Wire feed roll 1,0/1,2 hard wire	455.037.002
9	Drahtvorschubrolle 1.0 / 1.2 für Alu	Wire feed roll 1,0/1,2 Alu wire	455.037.003
10	Druckritzel 37mm	Geared pressure adapter 37mm	455.042.202
11	Gegendruckrolle 37 mm	Back pressure roll 37 mm	455.037.008
26. Schaltpläne / circuit diagrams

JÄCKLE

Schaltplan Maschine- circuit diagram Power source

Schaltplan-Legende Maschine / Key to the electrical diagram Power source:

	Beschreibung	Designation		Beschreibung	Designation
CCI	Steckverbindung DV Koffer	Wire feed case connector	RS	Sekundär Block	Secondary block
CHR	Steckverbindung Kühlgerät	Cooler unit connector	S-INT	Mikroprozessorkarte	Microprocessor pcb
Ср	Schutzkondensator Ausgang	Exit protection capacitor	S-INV	Primär Inverter block	Primary Inverter block
D2	Sekundäre Dioden	Secondary diodes	S- LINK	Kondensatorbank	Capacitor bank
EMC	EMV Filter	EMC filter	S-PS	Netzteil	Supply voltage
IL	Hauptschalter	Supply switch	ТА	Messwandler	IGBT power transformer
L2	Drosselspule	Inductor	TH2	Thermofühler Sekundärblock	Secondary circuit thermostat
MV	Lüfter	Fan motor	TP	Haupttransformator	Main power transformer
RP	Netzgleichrichter	Primary rectifier	VR	Schutzvaristoren	Output diodes Snubber Varistor

	Kabelfarbe	Colour key		Kabelfarbe	Colour key
AN	Orange Schwarz	Orange – Black	Gg	Grau	Grey
Ar	Orange	Orange	Mr	Braun	Brown
AR	Hellblau – Rot	Sky blue – Red	NA	Schwarz – Hellblau	Black – Sky blue
Az	Hellblau	Sky blue	Nr	Schwarz	Black
Bc	Weiß	White	RN	Rot – Schwarz	Red – Black
BI	Blau	Blue	Ro	Rosa	Pink
BN	Weiß – Schwarz	White – Black	Rs	Rot	Red
BR	Weiß Rot	White – Red	Vd	Grün	Green
GI	Gelb	Yellow	VI	Violett	Violet
GV	Gelb - Grün	Yellow - Green			

	Beschreibung	Designation		Beschreibung	Designation
CA	Stecker Brenneroption	Plug Torch option	ME	DV Motor mit Tacho	Motor with encoder
CCI	Stecker Maschine	Connection machine	MKB	Bedienplatine	Operating pcb
СМ	Stecker DV Motor	Plug wire feed motor	PT	Brennertaster	Torch trigger
СТ	Stecker Brennertaster	Plug Torch trigger	SMC	Motorregelplatine	Motor pcb
EVG	Magnetventil 24V DC	Solenoid valve 24VDC			

27. Schweißprogramme / Program table:

*39AT2A3	7					>	××		×	×		>	<		×		×	×																							×	>	××	•				02 V 43
*ЭЯА ЯЗШОЧ	9																																												×>	<		
*ЯНОЯ/ЗЧІЯ	5																																															
COLD∗	4																		:	× >	<		× >	×																								_
DOPPELPULS	2	× >	< >	< ×		××	×		××	×	:	× >	< ×		×	×	×	×		× >	<		× >	××	8	×				×	>	<	×	×	××	>	<	×	× >	<	×	>	× ×	•				
	-	× >	< >	<	:	××	×		××	×		× >	< ×	:	×	×	×	×		× >	<		× >	××		×				×	>	<	×	×	××	>	<	×	×>	<	×	>	××	:				
AUTOMATIK MIG	0	× >	<			××	×		××	×		× >	< ×		×	×	×	×		× >	< ×		××	××	1		×	×	×																			tigen
GAS		Ar / 16-20% CO2	AF / 16-20% CO2	Ar / 16-20% CO2	7	Ar 99.9%	Ar 99.9%		Ar 99.9% Ar 99.9%	Ar 99.9%		Ar 99.9%	Ar 99.9%		Ar 99.9%	Ar 99.9%	Ar / 30-50% He	Ar / 30-50% He		Ar 99.9%	Ar 99.9%		Ar 99.9%	Ar 99.9%		Ar / 30% He	Ar / 1-2% CO ₂	Ar / 1-2% CO ₂	Ar / 1-2% CO ₂	Ar 99.9%	AV 00 00/	N C C L	Ar 99.9%	Ar 99.9%	Ar 99.9% Ar 99.9%		AL 1 2-3% 002	Ar 99.9%	Ar 99.9%	Ar / 2-3% CO.	Ar / 2-3% CO ₂	00 /00 UT-V	Ar / He / CO.		SELF SHIELDING		DIAL Valuation and direction	rit der Taste FNTFR / OK hestä
Ø		1.2	, i c	10		1.0	1.6		1.0	1.6		1.0	1.6		1.2	1.6	1 2	12		0.8	1.2		0.8	0.1	!	1.6	0.8	1.0	1.2	1.2	¢ †	<u>i</u>	1.2	1.6	1.2	5	i	1.6	1.6	10	1.2	1	210	!	2.4	4:4	A MATC	tellen - m
MATERIAL		FCW 316 T19 12 3	FCW 309 123 12 ECW 300 123 12	FCW 309 123 12		AI 99.5 AI 1050	AI 99.5 AI 1050	and an	AI Mg5 S AI 5356 AI Mg5 S AI 5356	AI Mg5 S AI 5356		AI SI5 S AI 4043A	AI SI5 S AI 4043A		AI Mg4.5 S AI 5087/5183	AI Mg4.5 AI 508//8183	AI Md5 S AI 5359	AI Mg4.5 S AI 5087/5183		BRAZING S CU-SI3	BRAZING S CU-SI3		BRAZING S CU-AI8	BRAZING S CU-AIS BRAZING S CU-AIS		Cu 99.9%	BRAZING S Cu-Si3	BRAZING S Cu-Si3	BRAZING S Cu-Si3	Cu 99.9%	Cuhi30Eo Cu 7168		INCONEL ERNICIMo3	INCONEL ERNICIMe3	H.FACING INCONEL H.FACING INCONEL	ELLIVA METAL C-44-	FLUAU METAL UNIO	STELLITE 21-G	H.FACING 21-G	DUPLEX FR2209	DUPLEX ER2209		SUPER DUPLEX ER2594 SUPER DUPLEX ER2594		FLUXC MF-10-60 GR		MODE with Metalician	sprozess (iviounny unu iviatoriaia und mit linkem Drehknoof einst
Programm- Programmer		303	213	353		402	404		412	414		422	424	i	433	434	463	483	1	511	513		521	523		534	541	542	543	553	563	2	603	604	613 614	000	600	684	694	702	703	202	733	3	808	010	Cabinain	aufrufen
noitqO*						_								-	_					_			_				_				_				_				-									_
*SAAT2A	7						×	×	××							× >	<									>	< ×	,	×								×	×	×									_
POWER ARC*	9							×	×							× >	<											;	×									×	×									
*AHOA(3919	2	>	< >	< ×	:			×	×							× >	<			_	_								-		_			_	×	×	×	×	×	_		_				_	× >	< >
COLD*	4	,	< >	< ×	:		×	×	×						×	× >	<																				×	×	×								>	*
DOPPELPULS	2						×	×	××		×	× >	< ×		×	× >			×	× >	<								×		×		×	×	×	×	×	×	× >	<	×	× >	××		× >	<	>	۲
	1					_	×	×	××		×	~ >	< >		×	× >			×	~ >	< ×							2	×		×		×	×	×	×	×	×	× >	<	×	~ >	××		~ >	<	>	۶
MIG								î	^^									•								-			-	î			î	_	Ŷ		Î	^	~ ^						<u> </u>			
GAS		02 20 20	2020	000	C02	Ar / 16-20% CD	Ar / 16-20% CO2	Ar / 16-20% CO2	Ar / 16-20% CO ₂ Ar / 16-20% CO ₂		Ar / 11-15% CO2	Ar / 11-15% CO2	Ar / 11-15% CO2	7	Ar / 8-10% CO ₂	Ar / 8-10% CO2	Ar / 8-10% CO2		Ar / 2-3% CO2	Ar / 2-3% CO2	Ar / 2-3% CO2 Ar / 2-3% CO5	4	Ar / 21-25% CO2	Ar / 21-25% CO ₂ Ar / 21-25% CO ₃	Ar / 21-25% CO ₂		AR / CO2 / O2 AR / CO2 / O2		AR / CO ₂ / O ₂	co ₂	Ar / 16-20% CO2	N 1 21-20 % 002	Ar / 16-20% CO ₂	Ar / 16-20% CO ₂	Ar / 16-20% CO ₂	Ar / 8-10% CO ₂	Ar / 2-3% CO,	Ar / 2-3% CO2	Ar / 2-3% CO2	MI / 2-3% UU2	Ar / 2-3% CO ₂	Ar / 2-3% CO ₂	Ar / 2-3% CO ₂ Ar / 2-3% CO ₂	200 m	Ar / 2-3% CO2	Ar / 2-3% UO2	Ar / 2-3% CO ₂	Ar / 2-3% CO.
um Ø		0.6	0.0	0.1	1.6	30	0.8	1.0	1 12		0.8	0.1	1.6		0.8	0.1	i 4		0.8	0.1	1.6		0.8	0.1	1.6		1.2		1.0	1.2	1.2	4	1.2	1.6	1.2	1.2	0.8	1.0	1.2	0.	0.8	1.0	2.1	2	1.0	7.	0.8	2. C
MATERIAL		Fe G3 SI-1	Fe G3 01-1	Fe G3 SI-1	Fe G3 SI-1	Eo C3 SI 1	Fe G3 SI-1	Fe G3 SI-1	Fe G3 SI-1 Fe G3 SI-1		Fe G3 SI-1	Fe G3 SI-1	Fe G3 SI-1		Fe G3 SI-1	Fe G3 SI-1	Fe G3 SI-1		Fe G3 SI-1	Fe G3 SI-1	Fe G3 SI-1		Fe G3 SI-1	Fe G3 SI-1	Fe G3 SI-1	Eo C3 Cl 1	Fe G3 SI-1		Fe Magnetische Korrektur	FCW RUTIL T42 2	FCW RUTIL T42 2		FCW BASIC T42 4	FCW BASIC T42 4	FCW METAL T42.2	FCW METAL T42 2	Cr-Ni 316 G19 12 3	Cr-Ni 316 G19 12 3	Cr-Ni 316 G19 12 3		Cr-Ni 310 G26 20	Cr-Ni 310 G26 20	Cr-Ni 310 G26 20 Cr-Ni 310 G26 20		Cr-Ni 309 G23 12		Cr-Ni 308 G19 9 Cr-Ni 308 C19 9	Cr-Ni 308 G19 9
Programm- Programm-		000		1003	004	010	011	012	013		021	022	024		031	032	0.34		041	042	044		051	053	054	070	073		082	103	113	24	143	144	163	173	201	202	203	204	211	212	213	-	222	622	231	233

JÄCKLE

*JAAT2A	1							×	×		×	< ×	:		×	×	×		>	< >	<																									×		×	×				V25 09.2015
ONER ARC	a o	•																																																×	×		
*AHOA/391	a v	•																																																			
OLD*	• C	•																				×	×			×	×																										E
	n D	×	×	×	×		×	×	×	2	<	< ×	6	×	×	×	×>	×	>	< >	<	×	×	×		×	×	<	×					×	•	×	×	×	×	×	>	<	×	××	<	×		×	×				Ne K butto
	M	×	×	×	×		×	×	×	2	<	< ×	:	×	×	×	×	~	>	< >	<	×	×	×		×	×	<	×					×	<	×	×	×	×	×	>	<	×	×>	<	×		×	×				Ig on the
IIG UTOMATIK	M o	×	×				×	×	×	2	<	< ×		×	×	×	××	~	>	< >	<	×	×	×		×	×	<		;	×	×	×																				/ tappir ne ENT
	GAS	Ar / 16-20% CO ₂	Ar / 16-20% CO2	Ar / 16-20% CO ²	Ar / 16-20% CO ⁵		Ar 99.9%	Ar 99.9%	Ar 99.9%		Ar 99.9%	Ar 99 9%		Ar 99.9%	Ar 99.9%	Ar 99.9%	Ar 99.9%	Ar 88.8%	Ar / 30 50% Ho	Ar / 30-50% He		Ar 99.9%	Ar 99.9%	Ar 99.9%		Ar 99.9%	Ar 99.9% Ar og o%	80.00 E	Ar / 30% He		Ar / 1-2% CO ₂	Ar / 1-2% CO2	Ar / 1-2% CO ₂	Ar 99 9%	00000	Ar 99.9%	Ar 99.9%	Ar 99.9%	Ar 99.9%	Ar 99.9%		AL 1 2-3% 0.02	Ar 99.9%	Ar 99.9%	Ar / 2-3% CO.	Ar / 2-3% CO2	a	Ar / 2-3% CO ₂	Ar / He / CO ₂	SELF SHIELDING	SELF SHIELDING		MATERIAL) can be adjusted by rotating knob - terminate with th
		1.2	1.2	1.2	1.2		1.0	1.2	1.6		0.1	16	2	1.0	1.2	1.6	1:2	1.6	1 2	10	i	0.8	1.0	1.2		0.8	1.0	1	1.6		0.8	1.0	1.2	1 2	4	1.2	1.2	1.6	1.2	1.6		1	1.6	1.6	10	1.2		1.2	1.2	2.4	2.4		material (th the left
	MAIEKIAL	FCW 316 T19 12 3	FCW 309 T23 12	FCW 309 T23 12	FCW 308H TZ19 9		AI 99.5 AI 1050	AI 99.5 AI 1050	AI 99.5 AI 1050		AI MG5 S AI 5356	AI Md5 S AI 5356		AI SI5 S AI 4043A	AI SI5 S AI 4043A	AI SI5 S AI 4043A	AI Mg4.5 S AI 5087/5183	AI Mg4.5 S AI SUS/ 80 M	AI MAE S AI 5350	AI Mad 5 S AI 5087/5183	000000000000000000000000000000000000000	BRAZING S Cu-Si3	BRAZING S Cu-Si3	BRAZING S Cu-Si3		BRAZING S Cu-AI8	BRAZING S CU-AI8 BPAZING S CU-AI8		Cu 99.9%		BRAZING S Cu-Si3	BRAZING S Cu-Si3	BRAZING S Cu-Si3	C11 99 9%	0.000	CuNi30Fe Cu 7158	INCONEL ERNICIMo3	INCONEL ERNICIMo3	H.FACING INCONEL	H.FACING INCONEL			STELLITE 21-G	H.FACING 21-G		DUPLEX ER2209		SUPER DUPLEX ER2594	SUPER DUPLEX ER2594	FLUXC MF-10-60 GR	FLUXC MF6-GF-55-PR		process (MODE) and Welding E / MATERIAL and change wi
umber ւօցւձm-	u d	303	313	343	353		402	403	404		412	414		422	423	424	433	404	163	483	2	511	512	513		521	522	770	534		541	542	543	553	8	563	603	604	613	614	000	600	684	694	702	703		723	733	808	818		Welding key MOD
Option	*			-	-							-	-	-		-	-			-	-	-	-	-	-			-			-	_	+		-	-		-			+	-	_	_	-	-	_	-					
ASTARC*	* 			-					×	× >	×						>	< >	<											×	×		×									×	×	×				-					
OWER ARC* ASTARC*	ч 9 9	•							×	× ×	× ×						>	×	< <											×	×		×									×	x x	×									
ире/ROHR* OWER ARC* ASTARC* Option	* 		×	×	×				×	× ×	× ×						, , ,	× × ×	< < <											×	×		×							×	×	×	X X X	× × ×								×	× ×
Option IPE/ROHR* ASTARC* CUD*	4 C		××	×	××				×××	×	× × × ×						> > > >	×	× × ×											×	×		×							×	×	x	x x x x	× × ×								×	x x x
орвеерисае омекакс. Веконк. Ватакс.	* 4 C 5 D 5		xx	××	xx				× × × ×		× × × × ×		×	×	×	×	× × × ×	<pre></pre>	< <tr></tr>	<	×	×	×	×						×	×		×××		×	<	X	×		×	×		X X X X X	× × ×	×	×	×	X	×	×	x	X	X X X X
орйол IIIG PULSE ODELEPULSE OWER ARC* ASTARC* ASTARC*	A M 1 2 6 F F 4 2 6 F F 4 2 7 4 7 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7		x	×	××				× × × × ×		× × × × × ×	*	××	XX	xx	X X	× × × × × ×		<	<	××	XX	××	XX						×	×		x x x		×	<		××		x x x	× × ×		X X X X X X	× × × ×	×	x	X X	x x	××	x x	x	×	X X X X X
орнол орнол оонекерисяе оомекакс° роловсерисяе оомекакс° ратакс°	MA 0 M 1 2 4 5 6 F 1 2 4 5 6 7 *		XX	×××	xx	x		X	× × × × ×			<	××		XX	XX			<	<	×	XX	××			×	× >		1	×	×	:	x x x	X		< × ×	X X X	X X		x x x x	x		X X X X X X X	× × × × × × × × ×	×××	x	XX	X X	x		xx	X	X X X X X X X X X X X X X X X X X X X
Option Option UTOMETRC* OWER ARC* INE-ROHR* IN	GAS MA M D C P P H *		CO ² X X	x x	co ²	x x		Ar / 16-20% CO ₂ X	Ar / 16-20% CO ₂ X X X X X X X X	Ar / 16-20% CO ₂ X X X X X X X X X X X X	Ar / 16-20% CO2 X X X X X X X X X X		Ar / 11-15% CO ₂ X X	Ar / 11-15% CO ₂ X X	Ar / 11-15% CO ₂ X X	Ar / 11-15% CO2 X X	Ar / 8-10% CO ₂ X X X X X X X X X X X X X X X X X X X			21.6-10% CO2 > > > >	Ar / 2-3% CO, X X	Ar / 2-3% CO ₂ X X	Ar / 2-3% CO, X X	Ar / 2-3% CO ₂ X X		Ar / 21-25% CO ₂ X	Ar / 21-25% CO2 X	Ar / 21-25% CO; X		AR/CO ₂ /O ₂	AR/CO ₂ /O ₂ X		AR/CO2/O2 X X X X	τΩ.	Ar / 16-20% CD, X X X	Ar / 21-25% CO2 X X X	Ar / 16-20% CO ₂ X X X	Ar / 16-20% CO ₂ X X		Ar / 16-20% CO ₂ X X X X X	Ar / 8-10% CO ₂ X X X X	Ar/2-3% CO, X X X X X X X	Ar / 2-3% CO ₂ X X X X X X X X X	Ar/2-3% CO2 X X X X X X X X	Arr 2-3% UO2 X X X	Ar / 2-3% CO ₂ X X	Ar / 2-3% CO2 X X	Ar / 2-3% CO2 X X	Ar / 2-3% CO ₂ X X	Ar / 2-3% CO ₂ X X X	Ar / 2-3% CO ₂ X X X	Ar / 2-3% CO ₂ X	Ar / 2-3% CO2 X X X X X A A A A A A A A A A A A A A
Option Option OPTER ARC* OWER ARC* DOWER ARC* DOWER ARC* DOWER ARC*	With model Weak Mark Mark	0.6 CO ₂ X · · · · · · · · · · · · · · · · · ·	0.8 CO ₂ X X X	1.0 CO, X X	1.2 CO ⁵ X X X	1.6 CO ² X		0.6 Ar / 16-20% CO ₂ X	0.8 Ar / 16-20% CO ₂ X X X X X X X X	1.0 Ar/16-20% CO ₂ X X X X X X X X X X X X X X X X X X X	1.2 Ar / 10-20% CU2 X X X X X X X X 16-20% CU2 X X X X X X X X X X X X X X X X X X X		0.8 Ar / 11-15% CO ₂ X X	1.0 Ar / 11-15% CO ₂ X X	1.2 Ar / 11-15% CO ₂ X X	1.6 Ar / 11-15% CO ² X X	0.8 Ar / 8-10% CO ₂ X X X X X X X X X X X X X X X X X X X	1.0 Ar/8-10% CO2 X X X X X X X X X X X X X X X X X X X			0.8 Ar / 2-3% CO ₂ X X	1.0 Ar / 2-3% CO ₂ X X	1.2 Ar / 2-3% CO, X X	1.6 Ar / 2-3% CO ₂ X X		0.8 Ar / 21-25% CO ₂ X	1.0 Ar / 21-25% CO2 X	1.6 Ar / 21-25% CO; X		1.0 AR/CO ₂ /O ₂ X	1.2 AR/CO ₂ /O ₂ X		1.0 AR/CO ₂ /O ₂ X X X X X	1 CO.	12 Ar / 16-20% CD. X X X	1.2 Ar / 21-25% CO2 X X X	1.2 Ar / 16-20% CO ₂ X X X	1.6 Ar / 16-20% CO ₂ X X		1.2 Ar / 16-20% CO ₂ X X X X X	1.2 Ar/8-10% CO ₂ X X X	0.8 Ar/2-3% CO ₂ X X X X X X X X	1.0 Ar / 2-3% CO ₂ X X X X X X X X X	1.2 Ar / 2-3% CO ₂ X X X X X X X X X X	1.6 AIT 2-3% UO2 A A A	0.8 Ar / 2-3% CO ₂ X X	1.0 Ar / 2-3% CO ² X X	1.2 Ar / 2-3% CO ₂ X X	1.6 Ar / 2-3% CO ₂ X X	1.0 Ar/2-3% CO ₂ X X X	1.2 Ar / 2-3% CO ₂ X X X	0.8 Ar / 2-3% CO ₂ X	1.0 Ar / 2.3% CO2 X X X X I 1.2 Ar / 2.3% CO2 X
Option Option IPE/ROHR* OWER ARC* IIIG PULSE IIIG PULSE	MATERIAL 2011 2 4 5 6 7 *	Fe G3 SI-1 0.6 CO ₂ X · · · · · · · · · · · · · · · · · ·	Fe G3 Sl-1 0.8 CO ⁵ X X X	Fe G3SI-1 1.0 CO ⁵ X X X	Fe G3 SI-1 1.2 CO ⁵ X X X	Fe G3 SI-1 1.6 CO ² X		Fe G3 SI-1 0.6 Ar / 16-20% CO ₂ X	Fe G3 SI-1 0.8 Ar / 16-20% CO2 X X X X X X X X X X		FeldSol-1 1.2 Ar/10-20% CO2 X X X X X X X X X X X X X X X X X X X		Fe G3 SI-1 0.8 Ar / 11-15% CO, X X	Fe G3 SI-1 1.0 Ar / 11-15% CO2 X X	Fe G3 SI-1 1.2 Ar / 11-15% CO ₂ X X	Fe G3 SI-1 1.6 Ar / 11-15% CO2 X X	Fe G3 SI-1 0.8 Ar / 8-10% CO2 X X X X X X X X X X X X X X X X X X X		FeG3011 1.2 Ar/A-10% CU2 X X X X X X X X X X X X X X X X X X X		Fe G3 SI-1 0.8 Ar / 2-3% CO, X X	Fe G3 SI-1 1.0 Ar / 2-3% CO ₂ X X	Fe G3 SI-1 1.2 Ar / 2-3% CO ₂ X X	Fe G3 SI-1 1.6 Ar / 2-3% CO ² X X		Fe G3 SI-1 0.8 Ar / 21-25% CO2 X	Fe G3 SI-1 1.0 Ar / 21-25% CO2 X	Fe G3 SI-1 1.6 Ar / 21-25% CO ₂ X		Fe G3 SI-1 1.0 AR / CO ₂ / O ₂ X	Fe G3 SI-1 1.2 AR / CO ₂ / O ₂ X		Fe MAGNETIC CORRECTION 1.0 AR/ CO2/ O2 X X X	ECW RITH T42.2 1.2 CO. X		FOW RUTIL 742 2 1.2 Ar / 21-25% CO2 X X X	FCW BASIC T42 4 1.2 Ar / 16-20% CO2 X X X X	FCW BASIC T42 4 1.6 Ar / 16-20% CO ₂ X X		FCW METAL T42 2 1.2 Ar / 16-20% CO ₂ X X X X X X	FCW METAL T42.2 1.2 Ar / 8-10% CO ₂ X X X X	Cr-Ni 316 G19 12 3 0.8 Ar / 2-3% CO, X X X X X X X X X X	Cr-Ni 316 G19 12 3 1.0 Ar / 2-3% CO2 X X X X X X X X X X X	Cr-Ni 316 G19 12 3 1.2 Ar / 2-3% CO2 X X X X X X X X X X X X X X X X X X X		Cr-Ni 310 G26 20 0.8 Ar / 2-3% CO ₂ X X	Cr-Ni 310 G26 20 1.0 Ar / 2-3% CO2 X X	Cr-Ni 310 G26 20 1.2 Ar / 2-3% CO2 X X	Cr-Ni 310 G26 20 1.6 Ar / 2-3% CO ₂ X X	Cr-Ni 309 G23 12 1.0 Ar / 2-3% CO ₂ X X X	Cr-Ni 309 G23 12 1.2 Ar / 2-3% CO2 X X X	Cr-Ni 308 G19 9 0.8 Ar / 2-3% CO2 X	Cr-NI 308 G19 9 1.0 Ar / 2-3% CO2 X

JÄCKLE Schweiß- u. Schneidtechnik GmbH Riedweg 4 u. 9 D-88339 Bad Waldsee GERMANY

www.jaeckle-sst.de info@jaeckle-sst.de

Text und Abbildungen entsprechen dem technischen Stand bei Drucklegung. Irrtümer und Änderungen vorbehalten.